
School of Computer Science & Electrical Engineering

BSc Computer Science

Orion: Cat Scanner & Encyclopaedia - an
iOS App implementing Machine Learning
for Cat Detection and Breed Recognition

Final Year Project Report

Olaf Bogus
BOGUS03801

Supervised by: Professor John Gan
Second Accessor: Doctor Themistoklis Melissourgos

In memory of Orion.

The best cat there ever was.

You have provided me with endless inspiration and are
the soul of my project.

Thank you, you are forever in my heart.

Rest in peace.

2005-2022

Acknowledgments

I would like to thank everyone that helped me and supported me through the creation of this
project.

To every student, lecturer and staff member who has helped me during my degree.
My tutor Professor John Gan who gave me insightful advice every week and always made
sure I was not panicking. Thank you for all your patience and help.
My partner Callum Roll for supporting me every step of the way and comforting me whenever
the pressure got overwhelming.
My friend and fellow student Arti Durga for accompanying me through this degree, letting me
vent all my frustrations and motivating me by studying and working with me.

I would like to give special thanks to my parents, who have helped me in many ways. Thank
you for being so supportive and loving.
To my mom without whom I would not be in University of Essex thank you. This is all possible
because of you.

Table of contents

Dedication
Acknowledgments
Table of contents
List of figures
Chapter 1: Project Introduction 1
 1.1 Project Choice Reasoning 2
 1.2 Project Goals 3
 1.3 Report Structure 5
Chapter 2: Project Background Research 6
 2.1 Machine Learning 7
 2.2 App Development 9
Chapter 3: App Implementation 12
 3.1 Interface Design 13
 3.2 Code Design 22
 3.3 Deployment Guide 26
 3.4 User Guide 29
 3.5 Application Development Process Summary 36
Chapter 4: Machine Learning for Cat Breed Classification 37
 4.1 Cat Breed Classification 38
 4.1.1 Model Design 38
 4.1.2 Model Development 40
 4.1.3 Model Dataset 42
 4.1.4 Keras to CoreML Conversion 43
 4.1.5 Process Summary 44
 4.2 Cat Detection through Binary Classification 45
 4.2.1 Model Summary 45
Chapter 5: Evaluation 46
 5.1 App Evaluation 47
 5.1.1 Case Testing 47
 5.1.2 Functionality Testing 49
 5.1.3 User Testing 53
 5.1.4 Market Comparison 63
 5.1.5 Evaluation Summary 66
 5.2 Machine Learning Evaluation 67
 5.2.1 Cat Breed Classification 67
 5.2.2 Cat Detection through Binary Classification 68
Chapter 6: Project Management 69
 6.1 Project Development Plan 70
 6.2 Management Tools 72
Chapter 7: Conclusion 76
 7.1 Technical Achievements 77
 7.2 Summary Thoughts 78
References 79
Appendixes 87
 Abstract 88
 Poster 89

Figures

Figure 1: Gantt-chart(1) 4
Figure 2: Early stage app design sketches 13
Figure 3: Prototype Home Screen (No input) 14
Figure 4: Prototype Home Screen (Output) 14
Figure 5: Autumn Term App Version Launch Screen 15
Figure 6: Autumn Term App Version Home Screen 15
Figure 7: Autumn Term App Version Result Screen 16
Figure 8: Final App Version Launch Screen 17
Figure 9: Final App Version Home Screen 17
Figure 10: Final App Version Result Screen 18
Figure 11: Final App Version Encyclopedia 18
Figure 12: Final App Version Encyclopaedia Entry Page 19
Figure 13: Final App Version History Page 19
Figure 14: Final App Version History Entry Page 20
Figure 15: App Header (Scanner) 22
Figure 16: App Header (Encyclopaedia) 22
Figure 17: App Header (History) 22
Figure 18: Code Snippet(Classifier Screen) 23
Figure 19: Code Snippet(Encyclopaedia) 24
Figure 20: Xcode Instructions (Step 5.1) 26
Figure 21: Xcode Instructions(Step 5.2) 26
Figure. 22: Xcode Instructions(Step 7) 27
Figure 23: Xcode Instructions(Step 8) 27
Figure 24: Xcode Instructions(Step 9.1) 27
Figure 25: Xcode Instructions(Step 9.2) 28
Figure 26: User Guide Launching(1) 29
Figure 27: User Guide Launching(2) 29
Figure 28: User Guide Home Screen 30
Figure 29: User Guide Encyclopaedia Screen 30
Figure 30: User Guide History Screen 30
Figure 31: User Guide Photo Picker(1) 30
Figure 32: User Guide Photo Picker (2) 30
Figure 33: User Guide Photo Picker (3) 31
Figure 34: User Guide Photo Picker (4) 31
Figure 35: User Guide Photo Picker (5) 31
Figure 36: User Guide Classification Results(1) 31
Figure 37: User Guide Classification Results(2) 32
Figure 38: User Guide Classification Results(3) 32
Figure 39: User Guide Encyclopaedia(1) 33
Figure 40: User Guide Encyclopaedia(2) 33
Figure 41: User Guide Encyclopaedia(3) 34
Figure 42: User Guide History(1) 35
Figure 43: User Guide History(2) 35
Figure 44: User Guide History(3) 35
Figure 45: User Guide History(4) 35
Figure 46: High-level diagram of the InceptionV3 Model[79] 38
Figure 47: Machine Learning Model Summary 38
Figure 48: Classification Model Loss 39
Figure 49: Classification Model Accuracy 39
Figure 50: Original Model Summary 40

Figure 51: Model Comparison(1) 40
Figure 52: Current Model Summary 41
Figure 53: Model Comparison(2) 41
Figure 54: Expanded Cat Breed Dataset Distribution 42
Figure 55: CoreML export code 43
Figure 56: Binary Classification Dataset Distribution 45
Figure 57: Binary Classification Training Accuracy 45
Figure 58: Binary Classification Training Loss 45
Figure 59: Functionality Testing Code(1) 49
Figure 60: Functionality Testing Code(2) 49
Figure 61: Functionality Testing Code(3) 49
Figure 62: Functionality Testing Code(4) 49
Figure 63: Functionality Testing Code(5) 50
Figure 64: Functionality Testing Code(6) 50
Figure 65: Functionality Testing Code(7) 50
Figure 66: Functionality Testing Code(8) 50
Figure 67: Functionality Testing Code(9) 50
Figure 68: Functionality Testing Code(10) 50
Figure 69: Functionality Testing Code(11) 51
Figure 70: Functionality Testing Code(12) 51
Figure 71: Functionality Testing Code(13) 51
Figure 72: Functionality Testing Code(14) 51
Figure 73: Functionality Testing Code(15) 51
Figure 74: Functionality Testing Code(16) 51
Figure 75: Functionality Testing Terminal Output(1) 49
Figure 76: Functionality Testing Terminal Output(2) 49
Figure 77: Functionality Testing Terminal Output(3) 49
Figure 78: Functionality Testing Terminal Output(4) 49
Figure 79: Functionality Testing Terminal Output(5) 50
Figure 80: Functionality Testing Terminal Output(6) 50
Figure 81: Functionality Testing Terminal Output(7) 50
Figure 82: Functionality Testing Terminal Output(8) 50
Figure 83: Functionality Testing Terminal Output(9) 50
Figure 84: Functionality Testing Terminal Output(10) 50
Figure 85: Functionality Testing Terminal Output(11) 51
Figure 86: Functionality Testing Terminal Output(12) 51
Figure 87: Functionality Testing Terminal Output(13) 51
Figure 88: Functionality Testing Terminal Output(14) 51
Figure 89: Functionality Testing Terminal Output(15) 51
Figure 90: Functionality Testing Terminal Output(16) 51
Figure 91: Functionality Testing Terminal Output(1) 52
Figure 92: Functionality Testing Terminal Output(2) 52
Figure 93: User Testing Before App(1) 53
Figure 94: User Testing Before App(2) 53
Figure 95: User Testing Before App(3) 53
Figure 96: User Testing Before App(4) 53
Figure 97: User Testing Before App(5) 53
Figure 98: User Testing Before App(6) 53
Figure 99: User Testing App Mid Testing 56
Figure 100: User Testing Final App State 58
Figure 101: User Testing Changes Desired By Users Graph 59
Figure 102: User Testing App Rating Graph 60

Figure 103: User Testing Home Screen Before 61
Figure 104: User Testing Home Screen After 61
Figure 105: User Testing Result Screen Before 61
Figure 106: User Testing Result Screen After 61
Figure 107: User Testing History Item Before 62
Figure 108: User Testing History Item After 62
Figure 109: Machine Learning Breed Classification Confusion Matrix 67
Figure 110: Machine Learning Cat Detection Through Binary Classification Confusion Matrix 68
Figure 111: Gantt-Chart Challenge Week 70
Figure 112: Gantt-Chart Road to Week 11 71
Figure 113: Gantt-Chart Road To Final Report 71
Figure 114: Jira Road to Final Report 72
Figure 115: Jira Open Day Preparation 72
Figure 116: Jira: Functionality Implementation Encyclopaedia 73
Figure 117: Jira Week 24 Summary 73
Figure 118: Gitlab Commits 74
Figure 119: Gantt-Chart(2) 75

Chapter 1:  
Project Introduction  

Page 1

1.1 Project Choice Reasoning
To begin the report I would like to explain what motivated me to choose this project. While
being presented with over 400 projects. I thought that it would be very hard to decide on just
one but I was proved wrong.
While looking through the database I would add projects that I found interesting to a list and
then go through it again eliminating less interesting projects until 5 were left. I was looking
for a project that would not only be compelling to do but would also challenge me. Ideally it
would involve something I was passionate about. The final year project had to be complex
enough but would not overwhelming to the point of failure.
Throughout my degree I have really enjoyed Software Development modules and Machine
Learning projects. The originally named “Developing A mobile app using machine learning
for cat breed recognition” seemed perfect and spoke right to my heart. It had everything I
wanted in a project. It allowed for a lot of flexibility. The complexity of the app could vary
from very low to very advanced. The machine learning could have very low accuracy or thrive
and be extremely accurate. I would have space in case of failure to achieve objectives as well
as additional expansion if the core goals proved easy.
The key in the project were cats. I grew up as the only child with a cat being my sibling and
my best friend. His name was Orion and that is where the app names comes from. I have had
a passion for cats my whole life. In science felines are often overlooked in order to focus on
canines - this holds true for Machine Learning as well. The availability of datasets for dogs
and cats is vastly different. The number of classification projects focusing on dogs
outnumbers cats greatly. This added an additional challenge to the project while researching
something I had a deep passion for.

Page 2

1.2 Project Goals
The aims of this project can be identified as two separate categories. The first one: to
produce an iOS application that would perform three basic functions:
1. Accept a photo uploaded by the user either via their Photos library or Camera app then

analyse it for cat breed features.
2. Save that photo and the information returned from a machine learning model and be

capable of displaying the saved information
3. Present an encyclopaedia page consisting of cat breeds and their key information.

The second part was to do with machine learning models. The machine learning model
would implement image classification. The classification would analyse the photo for cat
breeds. The model would ideally achieve high accuracy and contain a large amount of labels,
ideally above a dozen.
The project goals were split into Epics, Stories and Sub-Tasks using Jira.
The three main Epics that were identified are linked to the assessment milestones:
1. Challenge Week
2. Interim Oral Interview
3. Final Report
These three Epics have multiple Stories assigned - each representing a complex goal then
split into small sub tasks achievable within 1 to few weeks.
This was then represented through a Gantt chart that can be seen on the next page:

Page 3

https://docs.google.com/spreadsheets/d/1cal-DDRtCftOkk5zSd3bwV-5l6uUl6nivtoT2FptAp4/edit?usp=sharing

Figure 1: Gantt-chart(1)

Page 4

&(����*$177�&+$57
���
��������� 'HYHORSLQJ�$�PRELOH�DSS�XVLQJ�PDFKLQH�OHDUQLQJ�IRU�FDW�EUHHG�UHFRJQLWLRQ ������ 2ODI�%RJXV

���������� ���������� ����� 1�$

�������������� �����Ɏ�ŏ��������������� �����ɏ�ŏ��������Ė���������

������� ������������ ���������� ���������
������
����

����
����

��������
�����	������
�������� �����Ɏ ��

ɏ
��
ɐ

��
ɑ

��
ɒ

��
ɓ

��
ɔ

��
ɕ

��
ɖ

��
Ɏɍ

��
ɎɎ

��
Ɏɓ

��
Ɏɔ

��
Ɏɕ�

��
Ɏɖ

��
ɏɍ

��
ɏɎ

��
ɏɏ

��
ɏɐ

��
ɏɑ�

��
ɏɒ

��
ɏɓ

��
ɏɔ

��
ɏɕ

��
ɏɖ

�
ɐɍ

�ɐɍɎɍɖɏŏɏ �Ş� �������������������������� (SLF :HHN�� :HHN�� ��GD\V Ɏɍɍʡ

�ɐɍɎɍɖɏŏɐ �ɐɍɎɍɖɏŏɏ ������������������������� ����� �����Ɏ �����Ɏ ɒ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɑ �ɐɍɎɍɖɏŏɏ ��������������������������� ����� �����Ɏ �����Ɏ ɒ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɒ �ɐɍɎɍɖɏŏɏ ���������������������� ����� �����Ɏ �����Ɏ ɒ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɕ �ɐɍɎɍɖɏŏɏ ������������� ����� �����Ɏ �����Ɏ ɒ����� Ɏɍɍʡ

��ɐɍɎɍɖɏŏɖ �ɐɍɎɍɖɏŏɏ ������������������������� ����� �����Ɏ �����Ɏ ɒ����� Ɏɍɍʡ

��ɐɍɎɍɖɏŏɑɎ �ɐɍɎɍɖɏŏɏ ���������������������� ����� �����Ɏ �����Ɏ ɒ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɑɏ �ɐɍɎɍɖɏŏɏ
����������� ���ŏ���� �����Ɏ �����Ɏ ɒ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɑɐ �ɐɍɎɍɖɏŏɏ ������������������� ���ŏ���� �����Ɏ �����Ɏ ɒ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɓ �ɐɍɎɍɖɏŏɏ ��������� ���ŏ���� �����Ɏ �����Ɏ ɒ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɔ �ɐɍɎɍɖɏŏɏ ���������
�� ���ŏ���� �����Ɏ �����Ɏ ɒ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɎɎ �ɐɍɎɍɖɏŏɏ ������������������� ���ŏ���� �����Ɏ �����Ɏ ɒ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɎɕ �ɐɍɎɍɖɏŏɏ �������
��� ���ŏ���� �����Ɏ �����Ɏ ɒ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɏɏ �ɐɍɎɍɖɏŏɏ
	���������������������������Ō�������
����������� ���ŏ���� �����Ɏ �����Ɏ ɒ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɎɍ �Ş� �������������ɎɎ (SLF :HHN�� :HHN��� ��:HHNV Ɏɍɍʡ

�ɐɍɎɍɖɏŏɎɎ �ɐɍɎɍɖɏŏɎɍ ����������������� ����� �����ɏ �����ɎɎ ɖ������ Ɏɍɍʡ

�ɐɍɎɍɖɏŏɎɏ �ɐɍɎɍɖɏŏɎɍ ���������������� ����� �����ɏ �����ɎɎ ɖ������ Ɏɍɍʡ

�ɐɍɎɍɖɏŏɎɑ �ɐɍɎɍɖɏŏɎɎ ����������������������� ���ŏ���� �����ɑ �����ɑ Ɏ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɎɖ �ɐɍɎɍɖɏŏɎɏ
���������������������ɑ� ���ŏ���� �����ɑ �����ɑ Ɏ����� Ɏɍɍʡ

��ɐɍɎɍɖɏŏɎɒ �ɐɍɎɍɖɏŏɎɎ ������������������������������� ���ŏ���� �����ɒ �����ɒ Ɏ����� Ɏɍɍʡ

��ɐɍɎɍɖɏŏɏɐ �ɐɍɎɍɖɏŏɎɏ
	���������������������������Ō��������������
������ ���ŏ���� �����ɓ �����ɓ Ɏ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɏɍ �ɐɍɎɍɖɏŏɎɏ
���������������������ɓ� ���ŏ���� �����ɓ �����ɓ Ɏ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɎɓ �ɐɍɎɍɖɏŏɎɎ ��������������������������������� ���ŏ���� �����ɔ �����ɔ Ɏ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɏɑ �ɐɍɎɍɖɏŏɎɏ
	���������������������������Ō��������������
������� ���ŏ���� �����ɕ �����ɕ Ɏ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɒɏ �ɐɍɎɍɖɏŏɎɎ ������	�������������� ���ŏ���� �����ɕ �����ɕ Ɏ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɎɔ �ɐɍɎɍɖɏŏɎɎ ���������������������������������� ���ŏ���� �����ɖ �����ɖ Ɏ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɏɍ �ɐɍɎɍɖɏŏɎɏ
���������������������ɖ ���ŏ���� �����ɖ �����ɖ Ɏ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɏɒ �ɐɍɎɍɖɏŏɎɏ 	���������������������������Ō�������������� ���ŏ���� �����ɖ �����ɖ Ɏ����� ɍʡ

�ɐɍɎɍɖɏŏɏɓ �ɐɍɎɍɖɏŏɎɏ 	���������������������������Ō�������������� ���ŏ���� �����ɖ �����ɖ Ɏ����� ɍʡ

�ɐɍɎɍɖɏŏɏɎ �ɐɍɎɍɖɏŏɎɏ
���������������������Ɏɍ� ���ŏ���� �����Ɏɍ �����Ɏɍ Ɏ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɏɔ �ɐɍɎɍɖɏŏɎɏ
���������������
���������Ė����������
��������� ���ŏ���� �����Ɏɍ �����Ɏɍ Ɏ����� ɍʡ

&��������� 1�$ ��������	����������� (SLF :HHN��� :HHN��� ���:HHNV ɔɒʡ

�ɐɍɎɍɖɏŏɏɖ �ɐɍɎɍɖɏŏɏɕ ��������� ����� :HHN��� :HHN��� ɖ������ ɖɖʡ

�ɐɍɎɍɖɏŏɐɐ �ɐɍɎɍɖɏŏɏɕ ������������ ����� :HHN��� :HHN��� ɔ������ ɐɐʡ

�ɐɍɎɍɖɏŏɐɑ �ɐɍɎɍɖɏŏɏɕ ��������������������� ����� :HHN��� :HHN��� ɔ������ Ɏɍɍʡ

�ɐɍɎɍɖɏŏɓɕ �ɐɍɎɍɖɏŏɏɖ ����������������Ō����������������� ���ŏ���� :HHN��� :HHN��� Ɏ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɔɍ �ɐɍɎɍɖɏŏɏɖ ����������������Ō��������������� ���ŏ���� :HHN��� :HHN��� Ɏ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɓɑ �ɐɍɎɍɖɏŏɏɖ
	���������������������������Ō�����
������������ ���ŏ���� :HHN��� :HHN��� ɐ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɓɐ �ɐɍɎɍɖɏŏɏɖ
	���������������������������Ō���������
������ ���ŏ���� :HHN��� :HHN��� ɏ������ Ɏɍɍʡ

�ɐɍɎɍɖɏŏɕɒ �ɐɍɎɍɖɏŏɐɐ 	���������������� ���ŏ���� :HHN��� :HHN��� Ɏ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɐɎ �ɐɍɎɍɖɏŏɏɖ �������������������������� ���ŏ���� :HHN��� :HHN��� ɑ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɐɍ �ɐɍɎɍɖɏŏɏɖ ������������������� ���ŏ���� :HHN��� :HHN��� Ɏ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɐɏ �ɐɍɎɍɖɏŏɏɖ ����	���� ���ŏ���� :HHN��� :HHN��� Ɏ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɖɏ �ɐɍɎɍɖɏŏɏɖ ������������ ���ŏ���� :HHN��� :HHN��� Ɏ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɖɐ �ɐɍɎɍɖɏŏɏɖ ��������������	���������� ���ŏ���� :HHN��� :HHN��� Ɏ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɐɒ �ɐɍɎɍɖɏŏɐɐ �������������������� ���ŏ���� :HHN��� :HHN��� Ɏ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɐɍ �ɐɍɎɍɖɏŏɐɑ ��������������� ���ŏ���� :HHN��� :HHN��� Ɏ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɖɍ �ɐɍɎɍɖɏŏɐɑ ����������������� ���ŏ���� :HHN��� :HHN��� Ɏ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɖɓ �ɐɍɎɍɖɏŏɏɖ ������������������ɏ ���ŏ���� :HHN��� :HHN��� Ɏ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɐɐ �ɐɍɎɍɖɏŏɖɕ ��������ɎŌ��������������������� ���ŏ���� :HHN��� :HHN��� ɓ������ ɍʡ

�ɐɍɎɍɖɏŏɐɐ �ɐɍɎɍɖɏŏɖɖ ��������ɏŌ����������������������������� ���ŏ���� :HHN��� :HHN��� ɓ������ ɍʡ

�ɐɍɎɍɖɏŏɐɐ �ɐɍɎɍɖɏŏɎɍɍ ��������ɐŌ����������������������� ���ŏ���� :HHN��� :HHN��� ɓ������ ɍʡ

�ɐɍɎɍɖɏŏɐɐ �ɐɍɎɍɖɏŏɎɍɎ ��������ɑŌ������������������������������� ���ŏ���� :HHN��� :HHN��� ɓ������ ɏɍʡ

�ɐɍɎɍɖɏŏɐɐ �ɐɍɎɍɖɏŏɎɍɏ ��������ɒŌ�����������������Ō���������� ���ŏ���� :HHN��� :HHN��� ɓ������ ɍʡ

�ɐɍɎɍɖɏŏɐɐ �ɐɍɎɍɖɏŏɎɍɐ
��������ɓŌ�����������������Ō���������������

���ŏ���� :HHN��� :HHN��� ɓ������ ɍʡ

�ɐɍɎɍɖɏŏɐɐ �ɐɍɎɍɖɏŏɎɍɑ
��������ɔŌ��������������������

���ŏ���� :HHN��� :HHN��� ɓ������ ɍʡ

�ɐɍɎɍɖɏŏɐɐ �ɐɍɎɍɖɏŏɎɍɒ ��������ɕŌ������������Ė������������� ���ŏ���� :HHN��� :HHN��� ɓ������ ɍʡ

�ɐɍɎɍɖɏŏɏɖ �ɐɍɎɍɖɏŏɎɍɓ 	������������������� ���ŏ���� :HHN��� :HHN��� ɓ������ ɍʡ

�ɐɍɎɍɖɏŏɐɖ �ɐɍɎɍɖɏŏɐɐ 	������������������������ ���ŏ���� :HHN��� :HHN��� Ɏ����� ɍʡ

�ɐɍɎɍɖɏŏɐɕ �ɐɍɎɍɖɏŏɐɐ ����������������������� ���ŏ���� :HHN��� :HHN��� Ɏ����� ɍʡ

�ɐɍɎɍɖɏŏɓɒ �ɐɍɎɍɖɏŏɏɖ ��������������� ���ŏ���� :HHN��� :HHN��� Ɏ����� ɍʡ

�ɐɍɎɍɖɏŏɑɍ �ɐɍɎɍɖɏŏɐɐ 	���������������������� ���ŏ���� :HHN��� :HHN��� Ɏ����� ɍʡ

�ɐɍɎɍɖɏŏɐɔ �ɐɍɎɍɖɏŏɐɐ ������������������������ ���ŏ���� :HHN��� :HHN��� Ɏ����� ɍʡ

�ɐɍɎɍɖɏŏɐɓ �ɐɍɎɍɖɏŏɐɑ ���������������������� ���ŏ���� :HHN��� :HHN��� Ɏ����� ɍʡ

1.3 Report Structure
The main report is divided into 7 chapters. It has 4 elements before the report starts

and 2 elements after it ends.

The first chapter covers general project information to introduce the reader into the

basic ideas of the project. The second chapter covers background research be it

academic papers or articles and videos. Chapters three gives an in-depth review of

the app design. Chapters four describes in detail work related to machine learning.

Chapter five goes over evaluation of the app and the machine learning models.

Chapter 6 focuses on planning and organisation of the project. The last chapter -

seven covers the summary and conclusions.

Page 5

Chapter 2: Project Background
Research 

Page 6

2.1 Machine Learning

Extensive research was required to successfully achieve all goals planned for the project. The
research was partly focused on purely academic papers and partly on articles and tutorial
videos shared on the internet.

With Machine Learning being a very important part of the project I had to do extensive
research to learn and understand how to implement and train a model correctly. To prepare
for this task I first had to learn and understand mechanics of Machine Learning for Image
Classification. To do this I studied papers such as "Deep Convolutional Neural Networks for
Image Classification: A Comprehensive Review”[1] which gives a very detailed and in depth
review of Convolutional Neural Networks used for image classification.
I understood that accuracy would be very important for my project as a low accuracy model
is not particularly useful. This topic was very well covered in multiple papers mainly being:
“ImageNet Classification with Deep Convolutional Neural Networks “[2], “Going deeper with
convolutions”[3], which both focus on improving existing CNN models accuracy. They study
what has a direct and positive impact on model accuracy.
Another paper discussing accuracy of a model is “Very Deep Convolutional Networks For
Large-Scale Image Recognition”[4] and “Deep Residual Learning for Image Recognition”[5]
which also cover neural network depth and the impact it has on accuracy. They both try to
find ways to solve the issue of accuracy degradation with increasing depth. Model scaling is a
very important aspect of Neural Network Models. Variables that might have impact on
accuracy in smaller models will not always stay significant when deployed to large scale
models. This was discussed and analysed in “EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks”[6].
These academic papers would form the foundation for my Machine Learning Model to
classify cat breeds. I would use the gained knowledge throughout the projects duration.

After the autumn term began my main source of new information would become articles and
videos explaining various Machine Learning topics rather than academic papers. This was
mainly due to time constraints and the complexity of the papers requiring long studies.
These papers were reviewed before the end of Challenge Week. To learn about my own
specific challenge which was machine learning for cat breed classification I searched for
other cat breed classification related projects.
One of my initial aims for the Challenge Week was to create a model that would classify a
photo depending if there was a cat present or not. “Cat or Not - An Image Classifier using
Python and Keras” [7], “Creating and Deploying a Cat-Dog Image Classifier using TensorFlow
and Streamlit” [8], “Building a Cat Detector using Convolutional Neural Networks —
TensorFlow for Hackers” [9], “Using TensorFlow to recognise Cats and Dogs”[10], “Cats vs
Dogs Classification (with 98.7% Accuracy) using CNN Keras – Deep Learning Project for
Beginners” [11] and “How to Classify Photos of Dogs and Cats (with 97% accuracy)” [12] would
allow me to see different methods and convolutional layers used for this issue.
Due to time constraints I wasn’t able to complete this model during Challenge Week but
would later successfully implement it during the Autumn Term. I thought that a simple model
only containing two classes would allow me for easier implementation of a more complex
model for the breed classification.
During Challenge Week it became obvious after all the research that the model I would use
would consist of a Convolutional Neural Network using transfer learning. I would refer to
TensorFlow API Documentation to study functions and variable meanings. For the majority of
my project I used Google Colab for model training.

Page 7

Once the Cat Binary Classification model was implemented I could start working on my Breed
Classification model. First I searched for a dataset. Finding datasets for Cat Breeds proved
difficult as I could only find 2 datasets. The Oxford-IIIT Pet Dataset[13] and Cat Breeds
Dataset[14]. The second dataset consisted of 67 different cat breeds and a total of 127
thousand images rather than the first one which had only 12 different breeds and a total of
2371 images.
The more expansive dataset would be used until spring term. After careful study of the 12
Kaggle Dataset[14] page notebooks I tried to create a model of my own as well as “Cat Breed
Classification System using CNN - Nurafiqah Mohtar”[15].
I decided to use InceptionV3 as “InceptionV3 with ROC- AUC 92%”[16] used it to achieve the
highest accuracy.
My main struggle was converting raw file data into a dataset. It would take me quite some
time to solve this issue, I tried following “Build a Deep CNN Image Classifier with ANY
Images”[17] and “Dog Breed Classification Using Tensor-flow Keras | Building an Image
Classifier“[18] but solved it finally using Pandas DataFrame as implemented in “InceptionV3
with ROC- AUC 92%”[16]. This notebook would prove the most valuable to the early stages of
my project.
Once the model was running I struggled with low accuracy and spent a long time
researching possible solutions to improve accuracy and fight overfitting.

Seeing as Cat Breed classification was not a very commonly tackled problem I turned to
researching Dog Breed classifiers as they worked the same just on a different dataset. “Dog
Breed Classification using CNNs”[19] and over 10 notebooks from “Dog Breed Identification”
[20] Kaggle page were studied to try and change variables, add different layers and
convolutional bases but nothing worked. “Overfit and underfit”[21], “Don’t Overfit! — How to
prevent Overfitting in your Deep Learning Models”[22] and “Early Stopping to avoid
overfitting in neural network- Keras”[23] would also prove fruitless.
This issue would not be solved until the spring term where I studied the dataset I was using
and found a lot of inconsistencies in the dataset. This caused me to switch to “The Oxford-IIIT
Pet Dataset”[13]. This dataset was much smaller but the data is much more authentic. The
overfitting was solved as it was caused by a inconsistent dataset with a large amount of
falsely assigned images.

To expand the Oxford dataset I manually searched for photos using Google Images to
assemble a dataset of 20 breeds with 200 images per breed.
In order to apply the Keras model in the iOS app I had to familiarise myself with CoreML and
exported the models to coreML format. To understand CoreML better I studied different
informational sources like “Train a Machine Learning Model with CreateML | Super Simple”
[24].

Page 8

2.2 App Development

My familiarity with iOS devices was the reason I chose iOS as the platform I would develop
for. However I had no previous experience developing for iOS, using SwiftUI or even Xcode.
This would prove difficult at times but thanks to extensive research I was able to accomplish
everything I planned.
A very important part of this was Apple Developer Documentation containing detailed
explanation of every function, variable and concepts as well as instructions for using Xcode
software.

During Challenge Week I was tasked with creating a prototype of the application. As coding is
a complex process video tutorial were key in my ability to create anything.
At the beginning of the Challenge Week my main idea was to create my app as a Progressive
Web Application. I researched them thoroughly but I had issues grasping the concept of
PWAs and decided to create a native iOS App.
To familiarise myself with Xcode I studied various tutorials and articles.
I studied a lot of different tutorials to grasp how SwiftUI works “Let's create a Simple Login
Screen for iPhone in Xcode (SwiftUI)”[25] and “SwiftUI 4: New Photo Picker Tutorial – WWDC
2022”[26]gave me a better idea of how that language functions.
That allowed me to create a functioning app prototype which included a photo picker that
took input from camera and photo library as well as on screen messages that updated
dynamically after the image upload.
Next I had to learn how to deploy the app to the phone and thanks to “Build and Run app
from Xcode onto Actual Device in Xcode 12.15.1”[27] I was able to do just that.
After challenge week I focused on improving the app visually as well as getting it ready to
work with an actual Machine Learning model. “SplashScreen for iOS in SwiftUI Tutorial 2022
(Xcode)”[28] would help me understand how to create and implement a launch screen in the
app.
In order to implement additional functionality screens in the future I had to research how to
implement a bottom navigation bar. This was possible after learning through “How to create a
Bottom Navigation Bar with TabView in Xcode (SwiftUI / iOS)”[29] and reading through
documentation.
When the bottom navigation bar was finished I had to learn how to actually do anything with
the photo uploaded by the user. I had to redesign the PhotoPicker previously implemented.
This was accomplished after a careful study of the following sources: “Swift for Beginners:
Select Photo from Library iOS (2020)”[30], ”SwiftUI Photo Picker - Compressed Images,
UIViewControllerRepresentable”[31], “HOW TO ADD IMAGES TO IOS APP - Swift (2020)”[32],
“Tutorial 31: How to Upload and Display Image on iOS App | HOW TO ADD IMAGES TO IOS
APP Swift 2021”[33], “iOS 15 Photo Picker Tutorial (2021, Xcode 13, iOS 15) - iOS for
Beginners”[34], “Importing an image into SwiftUI using PHPickerViewController – Instafilter
SwiftUI Tutorial 9/12”[35], “Wrapping a UIViewController in a SwiftUI view – Instafilter SwiftUI
Tutorial 5/12”[36].
I was finally able to pass the uploaded Image as an object to the app and display it back to
the user.
With the term coming to the end it was time for me to implement the Machine Learning
model in the actual app. This seemed difficult at first but after extensive research involving :”
Load CoreML Model into Xcode | Super Simple”[37], “Use CoreML Model in SwiftUI”[38],
“Compile CoreML Model in Xcode”[39], “Test CreateML Model with CoreML in an App | Super
Simple”[40] and ”CoreML Basics in iOS (Swift 5, Machine Learning, Xcode 12) - 2022 iOS
Development”[41] the problem proved easy to solve.

Page 9

At this point the PhotoPicker still needed some tweaking. It was improved after watching the
following: “My Images 1: Photo Picker and Camera in SwiftUI”[42], “SwiftUI Popup Image
Picker - Custom Popup's, Image Picker Modifier - Xcode 13 - SwiftUI Tutorials”[43], “The
Complete Guide for Integrating Camera and Photo Library in SwiftUI”[44].
To polish off the app visually I have created an app icon thanks to “How to Create an App Icon
(2019)”[45] and improved the launch screen after watching “How to Create Launch Screen /
Image in Swift 5 and Xcode 11”[46]. This would mark the end of development during the
Autumn term.

When worked resumed in the new year, 2 major functionalities were still not implemented.
Both of them tackled data management.
To implement the History screen and what came with that - a database and saving the images
I studied the Core Data Documentation. The process of learning how to save objects in a
Core Data database and creating a database in the first place was tumultuous but made
easier thanks to “Saving Images Using Core Data”[47], “Creating a Core Data Model”[48],
“Fetching Records With Core Data: Type Methods”[49], "Fetching Objects”[50], “How to
combine Core Data and SwiftUI”[51]. Special credit has to be given to “Saving Images Using
Core Data”[47] from which some code was used in my project. Mainly the
UIImageTransformer extension.
To implement the Encyclopaedia, a very important source for this implementation was
“SwiftUI Dynamic List App (Xcode 12, 2021, SwiftUI 2.0) - iOS Development”[52] more minor
source “Xcode 11.4.1 - Loading a LaunchScreen Image from Assets Folder”[53]. A lot of the
information gained from the History screen was used to implement the encyclopaedia, it just
used a different way of storing data.

Conducting the User Tests meant implementing changes desired by the users. One of them
being improving the History page management by adding delete entries function and
compressing photos before saving.
To accomplish this I studied the following articles: “How to delete Core Data objects from
SwiftUI views”[54], “How to delete a Core Data object”[55], “Swift 3 Core Data Delete Object”
[56], “Deleting from a Core Data fetch request”[57], “How to delete Core Data SwiftUI?”[58],
“Delete/Reset all entries in Core Data?”[59], “SwiftUI update of deleted CoreData entities
from different Tab”[60], “How to Save, Fetch, Update and Delete data from Core Data using
Swift”[61], “Core data with swiftui (create, read, update and delete)”[62], “Core Data:
Quickest way to delete all instances of an entity”[63], “Core data object not nil after deleting
from context”[64], “How to delete Core Data objects from SwiftUI views”[65].
In order for the photo files to be stored efficiently I tasked myself with compressing the
images prior to saving. This was accomplished with the help of: “How to get the size of data
present in coredata store?”[66], “Compress a UIImage”[67] and “In Swift, how to reduce an
image file size to a specific size? e.g 1MB”[68].

With User Testing came a lot of visual fixes. These sometimes proved troubling. Thanks to the
information I was able to gather on the internet I was able to successfully implement them.
The following resources were studied for this purpose: “Date() formatting in SwiftUI”[69],
“How to display date and time in SwiftUI”[70], “How to change Background Color of Button in
SwiftUI”[71], “SwiftUI Label tutorial – how to create and use Label in SwiftUI”[72], “Introducing
SwiftUI TabView and Working with Tab Bar Customization”[73], “Links in SwiftUI”[74], “SwiftUI
Button Tutorial: Customization”[75], “How to get file size using FileManager + formatting”[76],
“How to create a tappable button“[77], “How to run some code when state changes using
onChange()”[78].

Page 10

Chapter 3: App Implementation  

Page 11

3.1 Interface Design

Summer 2022

The first design was created during summer of 2022. The planning of the app has just began
at that point. The original functionality planned for the app included: a classification screen
that would work as the home screen - it would use a machine learning algorithm that would
classify a photo input from the user and display the results of the classification, a search
screen to look through a built in encyclopaedia and a history screen that would allow to
access previously classified photos.
These functionalities remained the same throughout the projects duration. All of them were
fully and successfully implemented.

The initial design from Summer 2022 was a very rough sketch. At this stage no color pattern
was decided on.

Figure 2: Early stage app design sketches

Page 12

Challenge Week 2022

The first actual implementation of the app was during the 2022 Challenge Week - when I was
tasked with creating a prototype. At this stage the app was just supposed to be able to take an
input and display a result. The result would be based on a randomly generated boolean. The
prototype was purposefully made to look very raw.

Figure 3: Prototype Home Screen (No input) Figure 4: Prototype Home Screen (Output)

The future versions of the app would be based on this design, greatly improved at each step.

Page 13

Autumn Term 2022

During the autumn term the app design would forego the most essential changes yet. The color
scheme was decided to be centred around coral orange. Coral would be the background color
throughout the app and all the elements displayed on top of it would we soft cream pink or yellow.

The app would see it’s first launch screen with an icon holder sign for where the future icon would
be placed. The app now actually used a machine learning model for classification and displayed
the top 3 results and the matching percentage for the top 1 result. During the autumn term the
two remaining functionalities (encyclopaedia and history tab) were not fully implemented yet. That
would stay the case until spring term.

Figure 5: Autumn Term App Version 		 	 Figure 6: Autumn Term App Version

Launch Screen	 	 	 	 	 Home Screen

Page 14

Figure 7: Autumn Term App Version Result Screen

Spring Term 2023

The Spring term saw the completion of final polishes to the app. Taking it from an unpolished
interface with a lot of potential into a professional grade and ready to release product.

All the missing functionality would be implemented with a fully functional encyclopaedia, history
screen and the classifier page utilising 2 machine learning models.

The whole app interface would see essential changes that improved the visual appeal as well as
accessibility. The app became much more intuitive to use without the need for complex manuals.
The aim was for everything to be self explanatory.

User Testing was essential in this process. The different background of the users(both android
and iOS users as well as people of different ages and those suffering visual impairments) ensured
that the app was friendly for everyone. Their different points of view came up with key changes
that were not obvious for me as the creator.

The details of user testing are covered in the evaluation chapter.

Page 15

Figure 8: Final App Version Launch Screen	 	 Figure 9: Final App Version Home Screen

Page 16

Figure 10: Final App Version Result Screen	 	 Figure 11: Final App Version 	 	 	
	 	 	 	 	 	 Encyclopaedia

Page 17

Figure 12: Final App Version Encyclopaedia		 Figure 13: Final App Version 		 	
Entry Page	 	 	 	 	 	 History Page

Page 18

Figure 14: Final App Version History Entry Page

Page 19

Design Summary

During the duration of the project the interface design has seen a tremendous amount of
growth. Every implemented change was made with the user experience in mind.
The aim was to design an app with visual appeal, a friendly user interface and accessibility.
The necessary time was taken to ensure every button and every sign is noticeable to the user
and self explained in its purpose.
The initial sketches from summer 2022 laid the foundation for the interface. On that
foundation the whole app was created and designed. With immense improvements and
development. Thanks to the thorough user testing, functionality testing, case testing and
intensive research I was able to make informed decisions developing the app of which results
speak by itself.

Page 20

3.2 Code Design

The app was developed using Apple’s Xcode 14.0 - 14.3 with SwiftUI. It has been designed for
iOS and optimized for iPhones with 6.1 inch screens.

The program classes and structs are split into 4 categories with a single sub category:

	 - Main

	 - Screens

	 	 - Item Views

	 - Extensions

	 - Data Managers

Brief Summary

The main category is simply the main struct from which the whole app is run. It only loads the
ContentView which contains the TabView with the three main bottom tabs.

Screens are any structs that present a different screen to the user. These include the Classifier,
Encyclopaedia, History as well as the sub screens presenting single Encyclopaedia or History
item. Referred to as Item Views.

Every screen includes a header which consists of two lines. The first line simply states Orion. The
second line corresponds to the tab the user is in at the moment: Scanner, Encyclopaedia or
History.

Figure 15: App Header Figure 16: App Header Figure 17: App Header

(Scanner) (Encyclopaedia) (History)

Screens have itemViews - these are detailed screens for items presented in the tables in the main
screens. itemViews do not have a header.

Extensions are classes or extensions that support functionality of the app implemented in other
structs.

Data Managers are used for the purpose of storing data.

Category Overview

MAIN

As previously mentioned the main struct simply invokes the ContentView.

SCREENS

Content View

The ContentView is the main struct that is always running and invokes other structs through the
TabView that is presented by the ContentView. Due to the simplicity of the code I am not
presenting any snippets. It is available in the repository.

Page 21

Classifier

Classifier acts as the home page and is used for processing and classifying photo inputs from the
user. This struct is the most complex part of the whole App as it invokes multiple functions and
objects.

The three functions are:

	

	 getBreed

	 	 This function takes a String and returns a BreedData object corresponding to the 	
	 	 String. The String is the Breed name, it then iterates through all BreedData to find a
	 	 breed 	with that name. It Is then returned.

	 detectCat

	 	 This function uses the classification model to decide if there is a cat on the input 	
	 	 photo. Depending on the result it sets the boolean state variable to true or false.

	 classifyCat()

	 	 This changes the display variables (messageOut1-4).

It first checks the boolean returned by the detectCat function and sets the display
message accordingly.

If there is a cat detected on the photo the message would be “This cat shares the
features of:” for the opposite result the message is “I don’t think this is a cat but if ti
was it would be:”.

Then it passes the photo through the breed classification model, after the output is
returned it is sorted and passed into strings in the following format: Breed name +
“:” + match confidentiality value and percentage sign.

After setting the strings the function compresses the photo and saves the photo
and classification outputs as well as the time stamp to the database. In the end the
display labels are set to the previously formatted strings.

The View of the Classifier consists of the previously mentioned header that every main screen
has.

The Classifier View can be in two states that is determined by the currently selected photo that
can either be null or not null.

If the photo is null - the View is in Home Page mode. The Home Page mode displays a welcome
message, an icon and a button prompting user to select an input.

If the photo is not null - the View is in output mode. The output mode displays the user input
photo and three buttons each corresponding to the top 3 results going from 1 at the top to 3 on
the bottom. Each button has a Encyclopaedia icon followed by the classified breed and the
confidence percentage. Each button is clickable as it is a NavigationLink that leads to the
Encyclopaedia page corresponding to the breed.

This is implemented with a single conditional statement.

Figure 18: Code Snippet(Classifier Screen)

Page 22

Encyclopedia

The Encyclopaedia struct includes the corresponding header. The struct has a single variable
which loads the Breed information to be presented in the table. This is then passed into a simple
for each table. Photos are fetched from assets by breed name.

Figure 19: Code Snippet(Encyclopaedia)

Each Item in the table is a NavigationLink that leads to the Encyclopaedia itemView with the
corresponding breed. All the Images in the encyclopaedia are sourced from the Purina Cat Library
Website[83].

ItemView: EncyclopediaView

The EncyclopediaView is a very simple struct. It is passed a breed when opened. It then 	
fetches the information from that breed and displays the photo followed by the name, 	 	
description, source and external URL with more information(which is the same as the 	 	
source). The URLs are lead to the corresponding Purina Cat Library website[82] and the
Smithsonian Zoo Website[103].

History

This struct uses just two variables. One being a list storing items fetched from the database, the
other being a context to connect to the database.

The struct utilises three functions.

	 getItems

	 	 This function fetches items from the database

	 removeEntry

	 	 This function removes an item from the database

	 getBreed

	 	 This is the same function as in the Classifier struct. It matches a Breed based on 	
	 	 the name string.

The View of the History struct includes the corresponding header followed by (just as in the
Encyclopaedia view) a table. It also consists of NavigationLinks that in this screen lead to the
subview HistoryView which fetches detailed data about the chosen History item.

Each NavigationLink presents a small icon of the saved photo and data stamp of the
classification.

The table allows to swipe to the left to invoke the onDelete functionality which then calls the
previously mentioned removeEntry function to delete items from the database.

Every time the view is loaded the data is fetched from the database again and displayed in the
table. This ensures the displayed data is always up to date.

Page 23

itemView: HistoryView

The HistoryView is passed a Cat object. It then displays all the information from the object 	 	
in the following order: photo, timestamp, classification results as clickable Encyclopaedia 	 	
buttons in order from #1 result to #3 result.

EXTENSIONS

Extension

This extension was created by Afraz Siddiqui from iOS Academy. I studied it in the video “CoreML
Basics in iOS (Swift 5, Machine Learning, Xcode 12) - 2022 iOS Development”[60].

It allows for images to be transformed into a buffer and then resized. This is essential as the
coreData models require the input to be a resized CVPixelBuffer

Image Picker

This extension was sourced from Jkirst from StackOverflow post “How does the Imagepicker get
analyzed by the MLMODEL?,”[79]. This extension facilities the functionality of the ImagePicker by
processing the input data from the user and making it accessible by the app.

UIImageTransformer

This extension facilitates image compression in the Classifier struct. It was sourced from “Saving
Images Using Core Data”[67].

DATA MANAGERS

BreedData

Breed data holds a list of 20 breeds that are displayed in the Encyclopaedia page. It is fetched by
the Encyclopaedia and by iteration loaded in the table. Each breed consists of the breed name,
description and url.

HistoryDataManager

This is an automatically generated file upon setting up coreData. It was edited to transform raw
data that the photo is saved us back to a photo. It facilitates the initialisation of the database.

Cat

This is an automatically generated file upon setting up coreData. It was edited to add functionality
for fetching date information. It can fetch the calendar date with the getDate() function and the
time information with the getTime() function.

Page 24

3.3 Deployment Guide

To Deploy the App on a device the following items are needed:

- a Mac device with Xcode 14 or higher installed

- a iPad or iPhone running iPadOS 16 or higher or iOS 16 or higher

- an active Apple ID

- a suitable cable to connect the device to the computer

- internet access

Step 1

On your device head to Settings then Privacy & Security and scroll to the bottom. Press
Developer mode and turn it on. A device restart will be required.

Step 2

Get the latest App code from the gitlab link : https://cseegit.essex.ac.uk/22-23-
ce301/22-23_CE301_bogus_olaf_w

Step 3

Connect the device to the computer and Trust the computer on your device.

Step 4

Open the downloaded project in Xcode

Step 5

To your left press the top item.

	 	 Figure 20: Xcode Instructions (Step 5.1)

Then In the menu select Signing & Capabilities

Make sure the Automatically manage signing checkbox is ticked.

In the field Team you will have to select your existing team or press add an account.

If you are adding an account you will be required to log in with your Apple ID.

After adding an account make sure it is chosen as the Team. Set the name of the bundle identifier.

Figure 21: Xcode Instructions(Step 5.3)

Page 25

https://cseegit.essex.ac.uk/22-23-ce301/22-23_CE301_bogus_olaf_w
https://cseegit.essex.ac.uk/22-23-ce301/22-23_CE301_bogus_olaf_w

Step 6

Unlock your device

Step 7

At the top of the Xcode window it should say “Any iOS Device” press on that and from the list
select your device.

Figure. 22: Xcode Instructions(Step 7)

Step 8

Click the run button to your left or go to Product -> Run

Figure 23: Xcode Instructions(Step 8)

Step 9

When the App is fully installed on your phone you will get a message saying the App author is
unknown. You will have to head to Settings -> General -> VPN & Device Management.

From there you have to press on your Apple ID and press Trust.

Figure 24: Xcode Instructions(Step 9.1)

Page 26

Figure 25: Xcode Instructions(Step 9.2)

Step 10

The app should now be automatically launched. You can disconnect the cable. This will exit the
App. Now you can run the App on your device whenever wanted. The app will stay active on the
phone for 7 days. After 7 days you will have to repeat the process to sign the app again.

Page 27

3.4 User Guide

Once the App is installed on the device please press on the icon to launch it.

You can do that from your home screen or App Library.

Figure 26: User Guide Launching(1) Figure 27: User Guide Launching(2)

Once pressed the App will start launching. You will see a loading screen. Once the App is
launched you will see the home screen. On the bottom of the screen you have three tabs. Each
one directs you to a different section of the app. You can switch through them freely.

Page 28

Figure 28: User Guide Figure 29: User Guide Figure 30: User Guide

Home Screen Encyclopaedia Screen History Screen

Classifier Tab

In the Classifier you can select a photo for classification.

Upon pressing Select Photo you will get a choice menu. You can either open the Photos Library
to pick a photo or the Camera app to take a photo. When selecting from the Library just press on
the photo to submit it for analysis. When taking a photo with the camera app press Use Photo
after taking it.

 Figure 31: User Guide Photo Picker(1) Figure 32: User Guide Photo Picker (2)

Page 29

Figure 33: User Guide Figure 34: User Guide Figure 35: User Guide

Photo Picker(3) Photo Picker(4) Photo Picker(5)

Once the input is passed you’ll see a result in the following format:

Figure 36: User Guide Classification Results(1)

Page 30

You are presented with 3 buttons displaying the top 3 results of the classification, a button to
clear the classification page to the home page and a button to select a new photo.

When pressed one of the three encyclopaedia icon buttons you will be directed to the
Encyclopaedia page with details about the corresponding breed. If you press the “Clear Page”
button you will be taken back to the Home Scanner Page.

Figure 37: User Guide Figure 38: User Guide

Classification Results(2) Classification Results(3)

Page 31

Encyclopedia Tab

When pressing the Encyclopaedia tab from the bottom navigation bar you will be taken to the
Encyclopaedia page.

Figure 39: User Guide Encyclopaedia(1) Figure 40: User Guide Encyclopaedia(2)

Page 32

You can scroll through the Encyclopaedia table. Each item in the table you can press to open the
detailed view of the breed.

Figure 41: User Guide Encyclopaedia(3)

The bottom of the detailed view has a Link button that will take you to a website that has
expansive information about the breed.

Page 33

History Tab

The History Tab is very similar to the Encyclopaedia page. Instead of breeds it presents a table
presenting your previously scanned photos. You can see a small preview of the saved photo and
the date and time it was classified on. You can also swipe on an item to the left to delete it.

 Figure 42: User Guide History(1) Figure 43: User Guide History(2)

 Figure 44: User Guide History(3) Figure 45: User Guide History(4)

Now you can use Orion: Cat Scanner & Encyclopaedia on your own! Enjoy!

Page 34

3.5 Application Development Process Summary

Challenge Week

I first started making plans for the app in summer 2022. I made some rough sketches for the
interface. With the challenge week I created a prototype with a purposefully rough look. I
have never used Xcode or SwiftUI before, trying to apply Java principles in SwiftUI has not
always proven easy. During the creation of the prototype I had to re learn a lot of the
principles I have been taught. Some tasks were much easier to complete than in Java but
some seemed needlessly and overly complicated. Creating the prototype itself was not a very
hard task and Xcode made it very simple and straightforward. Creating a button to take
inputs from users photo library was the most complicated task that took a considerable
amount of time during challenge week. It took effort to get used to the way SwiftUI works.

Autumn Term

The main challenge for development during autumn term was time constraint. All the tasks
were accomplishable, the reason I failed to finish everything as planned during autumn term
was due to the time.
Machine Learning part of the project took a considerable amount of time that would
otherwise be spent on app development. Familiarising myself with Xcode and SwiftUI was
straightforward but some tasks would require more time than I anticipated. Thus the
encyclopaedia and history implementations had to be delayed to the spring term.
Reworking the prototype took some effort and a lot of thinking. Choosing colours so that they
are visually pleasing as well as easily distinguishable and friendly to the user took a lot of trial
and error. Polishing the look of the application in ways that were small turned out to be
complicated to implement.

Spring Term

The goals of the spring term was to completely finish the app. That meant implementing the
functionalities missed previous term and user testing the app to adjust the interface and
functionality. The implementation of History and Encyclopaedia screen proved simple
enough to program once I had the time.
After careful user testing which consisted of two rounds the application saw major changes.
The details of the user testing are described in the evaluation chapter. The user feedback felt
very refreshing and eye opening. As someone who designed and programmed the whole
application everything seemed very obvious to me. To the users the functionality was not so
obvious and needed more clearly visible buttons. Thanks to the testing I was able to fix easy
mistakes that were a result of overworking and overlooking like typos and wrong sorting
order.

Page 35

Chapter 4: Machine Learning for
Cat Breed Classification  

Page 36

4.1 Cat Breed Classification

4.1.1 Model Design

The model used for classification is a TensorFlow model using Keras. It is primarily based on
InceptionV3[29].

The InceptionV3 architecture is visualised below:

Figure 46: High-level diagram of the InceptionV3 Model[79]

Source: https://cloud.google.com/tpu/docs/inception-v3-advanced

The InceptionV3 is has its layers frozen for the purpose of my model.

For the purposes of increasing accuracy I have added 11 additional layers.

Figure 47: Machine Learning Model Summary

Page 37

https://cloud.google.com/tpu/docs/inception-v3-advanced

The final parameter count was 22529844 of which 727860 were trainable giving a trainable ratio of
30.95%.

This allowed the model to break 90% validation accuracy as well as accuracy in testing.

Figure 48: Classification Model Loss		 	 Figure 49: Classification Model Accuracy

Page 38

4.1.2 Model Development

The first model design consisted of InceptionV3 with frozen layers and 4 additional layers.

Figure 50: Original Model Summary

This yielded a total amount of parameters 22,066,346 of which trainable parameters were
263,562 giving a ratio of 1.19%.

The decision to commit to InceptionV3 was made after a review of 3 other convolutional neural
networks. Inception V3 seemed to be marginally performing better.

Figure 51: Model Comparison(1)

As this model was being trained on a faulty dataset different combinations of additional layers
were tried. The model topped at peak validation accuracy of 47.11%. This would not improve until
the dataset switch. This model design would be the same model design when switching to the
correct dataset.

Page 39

Post dataset switch the same model achieved a validation accuracy of 89.47%.

The goal of breaking 90% accuracy was reached after testing multiple combinations of different
additional layers. At last it was reached using the current design

Figure 52: Current Model Summary

This allowed the validation accuracy to peak at 95.52%.

The decision to stick to InceptionV3 was retested at this point. The results seemed to marginally

favour that neural network again.

Figure 103: Model Comparison(2)

Page 40

4.1.3 Model Dataset

The data is passed to the model through an ImageDataGenerator with a batch size of 16. This
allows for image augmentation. Each image is resized to a size of 299 pixels by 299 pixels. While
supplied to the model the images can be flipped and shifted.

The first dataset used for this model was Cat Breeds Dataset[16]. It consisted of 67 different cat
breeds and a total of 127 thousand images. The dataset was quite imbalanced and was never
used in its entirety due to the size. First I chose a small subset of the dataset consisting of 12
breeds. Those breeds were: Abyssinian, Balinese, Cornish Rex,

Domestic Medium Hair, Himalayan, Manx, Oriental Short, Russian Blue ,Singapura ,Tonkinese and
a total of 452 images.

This was switched to a different subset while struggling with overfitting. The new subset counted
12 breeds as well and 4053 images. The breeds were as follows: Abyssinian, American Bobtail,
American Curl, Applehead Siamese, Balinese, Birman, British Shorthair, Burmese ,Cornish
Rex ,Egyptian Mau ,Exotic Shorthair and Havana.

During preparation for Interim Oral Interview I spotted a lot of inconsistencies in the images of the
dataset. What got my attention was a lot of rabbit photos. After a careful review of the dataset I
have concluded that the overfitting was caused by those inconsistencies.

That prompted me to switch to the Cats and Dogs Breeds Classification Oxford Dataset[X]. This
dataset consists of 37 labels including dog and cat breeds. Out of the whole dataset 12 labels are
cat breeds. Each having 200 images. These being: Abyssinian, Bengal, Birman,

Bombay,British Shorthair, Egyptian Mau , Maine Coon, Persian, Ragdoll, Russian Blue, Siamese,
Sphynx. Implementing this dataset in the model resolved the issue of overfitting. This dataset
brought in a different issue, the size of the dataset is relatively small. I have strived to increase it to
20 labels.

I achieved that by manually sourcing images. These were partly from the previous Cat Breeds
Dataset[15] after a considerate visual study of the cat breed and manual review of the photos.
After extracting all the appropriate images from the dataset I then turned to the internet to make
sure that each breed had 200 images. This was a lengthy and arduous process.

In the end I was able to achieve my goal and expand the dataset to 20 labels with 200 images per
label. The final labels were: Abyssinian, Bengal, Birman

Bombay,British Shorthair, Calico, Chinchila, Egyptian Mau , Korat, Lykoi Cat, Maine Coon,
Norwegian Forest Cat, Persian, Ragdoll, Rex, Russian Blue, Sand Cat, Scottish Fold, Siamese,
Sphynx. All with equal distribution.

Figure 54: Expanded Cat Breed Dataset Distribution

Page 41

4.1.4 Keras to CoreML Conversion

In order for the model to be used in the iOS app it had to be converted to a CoreML model.

This was a straightforward process. To convert the model an image input type had to be specified
and the labels had to be supplied. The whole process was accomplished in few lines of code

Figure 55: CoreML export code

Page 42

4.1.5 Process Summary

During the beginning of the process I have struggled to understand how to correctly implement a
machine learning model. Creating datasets from raw data files were very difficult for me to
understand. After a long series of failed attempts I was able to implement a model.

The next major issue was over fitting. As described in the dataset analysis the first dataset I chose
was not accurate. Later after a more thorough research into the problem I learned that the dataset
was created with a tool that downloads all images available for a keyword internet search. That
explained why rabbits appeared so often in the image files themselves as a lot of rabbit breed
names are similar to cat breed names. Solving this issue was both euphoric and irritating as it was
a very easily avoidable mistake that was only made due to my unfamiliarity with the process.

Switching to the Oxford Dataset I aimed to expand it. With expansion the accuracy of the model
went down. This prompted me to search for breeds that were visually distinct from other breeds
to cause less accuracy degradation. After a laborious process of finding images for the expanded
dataset the whole dataset was assembled.

The accuracy was not at the desired level as I wanted the model to have at least 90% accuracy.
Due to my limited hardware resources I was training the model on Google Colab. This had it own
different limits. The time outs did not allow me for long training.

I then switched to training on my own machine. Even though the training process was much
slower on my machine it allowed for much longer continuous training. It turned out that the model
was able to break 90% after a more lengthy training process.

Page 43

4.2 Cat Detection through Binary Classification

4.2.1 Model Summary

Binary classification was implemented with the same model architecture as that used for the
breed classification. The dataset was switched to reflect cats and non cat images.

The dataset used for this model was based on Dog and Cat Detection[80] Kaggle dataset. It was
then expanded with images of random objects to increase the model accuracy beyond just dog
and cat differences. The dataset consists of 8394 images in total of which cat images were 5020
and 3374 non cat images. Due to the simplicity of the model it only needed to be trained for 5
epochs.

Figure 56: Binary Classification Dataset Distribution

The model was able to achieve over 99% validation accuracy and less than 0.021 loss.

Figure 57: Binary Classification Training Accuracy 	 Figure 58: Binary Classification Training Loss

Page 44

Chapter 5: Evaluation  

Page 45

Chapter 5.1 App Evaluation

Chapter 5.1.1 Case Testing

The below table presents use cases that were used to test the app. Every step was replicated
manually on the deployed app.

User Story Task Steps Desired Outcome Step Outcome

A veterinarian is seeing a
new patient today. In
order to create a new
health record in the clinic
database they have to
input the cat breed. The
veterinarian is not sure
what breed the patient is
and the owner has no
clue either. The
veterinarian needs help
determining what breed
the new patient is.

1. Vet opens the Orion
App

2. Vet presses Select
Photo

3. Vet presses Camera
in the input menu

4. Vet takes photo of
the cat and submits
it

5. Vet looks at the
classification results
and makes their
determination

1. The app launches

2. The Photo Picker

menu opens

3. The camera app

launches

4. The data is

processed by the
Machine Learning
model

5. The model outputs
are displayed on the
page

1. Positive

2. Positive

3. Positive

4. Positive

5. Positive

A veterinarian clinic has
suffered a power outage
that affected the health
records saved in the last
hour. The cat whose
health records were
wiped already left the
clinic. The doctor needs
to create the health
record again. They do
not remember the cats
breed but they used the
Orion App to determine
the breed. The Vet needs
to get the cat breed
again but does not have
a photo of the cat saved.

1. Vet opens the Orion
App

2. Vet presses the
History tab

3. Vet presses on the
latest entry in the
History table

4. Vet can now access
the classification
results

1. The app launches

2. The History tab view

loads and fetches
data

3. The History item
view loads and
fetches data

4. The fetched item
data is displayed

1. Positive

2. Positive

3. Positive

4. Positive

Kimmy is interested in
getting a Bengal cat but
does not know much
about the breed and
wants to learn more.
Kimmy needs to access
information about
Bengal cats.

1. Kimmy opens the
Orion app

2. Kimmy presses on
the Encyclopedia tab

3. Kimmy finds the
Bengal cat by
scrolling through the
table

4. Kimmy presses on
the Bengal cat
picture

5. Kimmy presses
Learn More at the
bottom of the Bengal
cat page

6. Kimmy can now
access information
about the Bengal cat

1. The app launches

2. The Encyclopedia

tab view loads and
fetches data

3. The table is
presented and allows
for scrolling

4. The Bengal
Encyclopedia page
opens and fetches
data

5. The external URL
opens leading to a
website with more
information

6. External URL loads

1. Positive

2. Positive

3. Positive

4. Positive

5. Positive

6. Positive

Page 46

Cynthia just found a
homeless cat that she
decided to take in. She
wants to learn more
about the cat as she
build a bond with them.
Cynthia wants to see if
the cat is of a certain
breed.

1. Cynthia opens the
Orion App

2. Cynthia presses
Select Photo

3. Cynthia presses
Camera in the input
menu

4. Cynthia takes photo
of the cat and
submits it

5. Cynthia looks at the
classification results

6. Cynthia presses at
the each of the result
to read more about
the breed

1. The app launches

2. The Photo Picker

menu opens

3. The camera app

launches

4. The data is

processed by the
Machine Learning
model

5. The model outputs
are displayed on the
page

6. The corresponding
Encyclopedia items
are loaded and
displayed

1. Positive

2. Positive

3. Positive

4. Positive

5. Positive

6. Positive

Lisa sees a photo of an
adorable cat on
instagram. She wants a
cat that looks exactly
like the one on the photo
but it is not clear what
breed that cat is. Lisa
wants to find out the
breed of the cat.

1. Lisa saves the photo
from Instagram

2. Lisa opens the Orion
App

3. Lisa Presses Select
Photo

4. Lisa presses Photo
Library in the input
menu

5. Lisa selects the
saved photo from
Instagram and
submits it

6. Lisa looks at the
classification results
and determines what
breed the cat is

1. The photo is saved
to Lisas Photo
Library

2. The app launches

3. The Photo Picker

menu opens

4. The Photo Library

launches

5. The data is

processed by the
Machine Learning
model

6. The model outputs
are displayed on the
page

1. Positive

2. Positive

3. Positive

4. Positive

5. Positive

6. Positive

Kyle uses the Orion app
a lot but she is currently
running out of storage
on her phone. The
photos stored by the
Orion app are taking a
lot of space.

Kyle needs to delete
some of the photos
stored by the Orion app.

1. Kyle opens the Orion
app

2. Kyle pressed History

3. Kyle scrolls through

the History table to
find a photo she
wants to delete

4. Kyle swipes to the
left and presses
delete to get rid of
the photo

5. Kyle repeats the
process for every
photo she wants
gone

1. The app launches

2. The History tab view

loads and fetches
data

3. The History tab view
presents the table
and allows to scroll
through it

4. The photo is deleted
from the database

5. Each photo deleted
by Kyle is deleted
from the database

1. Positive

2. Positive

3. Positive

4. Positive

5. Positive

User Story Task Steps Desired Outcome Step Outcome

Page 47

5.1.2 Functionality Testing

The functionality testing has been conducted through a series of test messages that are printed
after all the desired code has been executed. Once the test message is printed without any
critical warnings the test counts as passed. This was also verified by visual inspection of correct
app visual behaviours.

Test Description Passed? Test Message Implementation Terminal Output

Launch Testing:
Test message
implemented in
the
ContentView
struct

PASSED

Classifier
Launch:
Test message
implemented in
the
ContentView
struct

PASSED

Classifier Photo
Picker:
Test messages
implemented in
the Classifier
struct inside the
PhotoPicker

PASSED

Classifier Photo
Binary
Classification:
Test messages
implemented in
the Classifier
struct in the
detectCat()
function

PASSED

Test Description Passed?

Figure 59: Functionality Testing Code(1)

Figure 60: Functionality Testing Code(2)

Figure 78: Functionality Testing
Terminal Output(4)

Figure 77: Functionality Testing
Terminal Output(3)

Figure 76: Functionality Testing
Terminal Output(2)

Figure 61: Functionality Testing Code(3)

Figure 75: Functionality Testing
Terminal Output(1)

Figure 62: Functionality Testing Code(4)

Page 48

Classifier Photo
Classification:
Test messages
implemented in
the Classifier
struct in the
classifyCat()
function

PASSED

Classifier Photo
Compression &
Saving:
Test messages
implemented in
the Classifier
struct in the
classifyCat()
function

PASSED

Classifier Label
Display:
Test message
implemented in
the Classifier
struct in the
classifyCat()
function

PASSED

Classifier
Encyclopedia
Links:
Test messages
implemented in
the BreedView
struct at the
end of the body
view

PASSED

Classifier Page
Clearing:
Test messages
implemented in
the Classifier
struct in the
body view

PASSED

Encyclopedia
Tab Loading:
Test message
implemented in
the
Encyclopedia
struct

PASSED

Test Message Implementation Terminal OutputTest Description Passed?

Figure 67: Functionality Testing Code(9)

Figure 65: Functionality Testing Code(7)

Figure 79: Functionality Testing
Terminal Output(5)

Figure 84: Functionality Testing
Terminal Output(10)

Figure 63: Functionality Testing Code(5)

Figure 82: Functionality Testing
Terminal Output(8)

Figure 66: Functionality Testing Code(8)

Figure 83: Functionality Testing
Terminal Output(9)

Figure 68: Functionality Testing Code(10)

Figure 81: Functionality Testing
Terminal Output(7)

Figure 80: Functionality Testing
Terminal Output(6)

Figure 64: Functionality Testing Code(6)

Page 49

Encyclopedia
Page Loading:
Test messages
implemented in
the BreedView
struct at the
end of the body
view

PASSED

History Tab
Loading:
Test message
implemented in
the History
struct

PASSED

History Data
Fetching:
Test message
implemented in
the History
struct in the
getItems()
function

PASSED

History Page
Loading:
Test message
implemented in
the History
struct in the
getBreed()
function

PASSED

History
Encyclopedia
Loading:
Test messages
implemented in
the BreedView
struct at the
end of the body
view

PASSED

History Deleting
Entries:
Test message
implemented in
the History
struct in the
removeEntry()
function

PASSED

Test Message Implementation Terminal OutputTest Description Passed?

Figure 74: Functionality Testing Code(16)

Figure 86: Functionality Testing
Terminal Output(12)

Figure 90: Functionality Testing
Terminal Output(16)

Figure 72: Functionality Testing Code(14)

Figure 73: Functionality Testing Code(15)

Figure 89: Functionality Testing
Terminal Output(15)

Figure 71: Functionality Testing Code(13)

Figure 85: Functionality Testing
Terminal Output(11)

Figure 87: Functionality Testing
Terminal Output(13)

Figure 70: Functionality Testing Code(12)

Figure 69: Functionality Testing Code(11)

Figure 88: Functionality Testing
Terminal Output(14)

Page 50

Terminal Output

Figure 91: Functionality Testing Terminal Output(1)

Figure 92: Functionality Testing Terminal Output(2)

Page 51

5.1.3 User Testing

2 rounds of user tests have been conducted over a 2 week period with 3 users participating each
round.

This is how the app looked at the point of the first round of testing:

Figure 93: User Testing 	 	 Figure 94: User Testing	 Figure 95: User Testing

Before App (1)		 	 	 Before App(2)	 	 	 Before App(3)

Figure 96: User Testing 	 	 Figure 97: User Testing	 Figure 98: User Testing

Before App(4)	 	 	 	 Before App(5)	 	 	 Before App(6)

Page 52

Round 1 Results

Question User 1 User 2 User 3

Q1:

On a scale of 1 to 10 how
would you rate the app
interface?

7/10 7/10 8/10

Q2:

What part of the app was your
favorite and why?

Encyclopedia & “Learn More”
button linked to Purina website
with loads of details

Encyclopedia with cute cat
photos

Encyclopedia as it is
interesting and has a lot of
adorable photos

Q3:

What part of the app was your
least favorite and why?

The tab labels are too small
and colors are too hard to
read.

History page because of the
color clashes, sorting oldest to
newest and bad text
formatting.

History sorting by oldest to
newest. The tab buttons are
not very readable.

Q4:

What would you change in the
app if anything and why?

Darker colors for tabs would
be better and bigger font. 
If the app could tell that the
photo is not a cat would be
great. It assigns Calico to
every non cat currently.

Add more space between the
heading and the content.
Breed Details button could be
more obvious. Change the
starting text in the scanner
page.

I would add slide left to go
back function.

Q5:

Is the color scheme of the app
clear to read? If not please
highlight areas that are
problematic.

The font should be darker
color and bolder.

Yellow button on top of a
orange background is not
great to read. The highlights on
tabs are blue and tables are
black so there is a lot of color
clashing. If the yellow button
matched the highlighted tab
color blue it would be more
appealing.

Previously mentioned tab
buttons. Light blue colors
would ideally be more
contrasted with the
background.

Q6:

Is the information presented by
the application detailed
enough?

If the scanner would name the
percentages matched with all
top 3 instead of just #1 & time
stamp at the history screen so
I can tell the order of the
photos. The history screen
could store more information
about the classification.

The history screen should have
time stamps. Percentages
matching the #2 #3 labels.

Yes.

Q7:

Does the wording throughout
the app clearly indicate usage
steps?

Change the “show me” In the
scanner page to something
else.

Wording is okay. Yes.

Q8:

What would you change about
the Scanner tab(if not
indicated before)?

Breed Details does not have a
button shape which would be
very helpful. Change the
wording of the result.

No other changes than
previously discussed.

Nothing

Q9:

What would you change about
the Encyclopedia tab(if not
indicated before)?

Cat icons are a bit small.
Maybe change the background
of the cats. More contrast.

The spacing between the
header and the table.

Nothing

Question

Page 53

Following changes have been implemented based on user feedback:

-General Changes

	 	 -the headers have an additional space added to the bottom to allow for more 	 	
	 	 space between the text and content

	 	 -it is now possible to swipe to go back from any button page

-Tab labels visibility
	 	 -the tab icons were made bigger and the color has been changed to match all 	 	
	 	 other app fonts

	 	 -the tab labels were made bigger and the font has been changed to match all other
	 	 font colours

-Cat detection
	 	 -a machine learning model was implemented that classifies wether a photo 	 	
	 	 contains a cat or not

-Fonts
	 	 -fonts all over the app have been adjusted to be the same color and be more 	 	
	 	 visible

-Scanner page
	 	 -the scanner page now presents a different opening message : “Upload Photo to 	
	 	 Detect Cat Breeds” instead of “Please Show Me Your Cat”

Q10:

What would you change about
the History tab(if not indicated
before)?

Photo size to be unified. Data
stamps. Text aligned.

Delete entries. Sort new to old and present
scan date.

Notes This user has a visual
impairment.

User Note: 
Could the dataset be
expanded?

User is dyslexic. 
User note: Chinchilla breed
has a typo.

—

Indicated changes: -History screen should present
time stamps

-History screen should store
more information

-Tab labels need to be bigger
and a different color

-Add cat detection

-Fonts should be darker and
bolder.

-Scanner should show all top 3
match percentages

-“Show Me” should be
changed to something
else(Scanner page)

-Breed Details link should have
a button shape

-Cat images in the
encyclopedia could be a bit
bigger & contrasted

-Photos in the history screen
should be all the same ratio
and the text should be aligned

-Tab colors are clashing with
the app color scheme

-Color clashes

-Text formatting

-History page should sort
latest to oldest

-History page should show a
time stamp

-Delete button for history page

-More space between header
and main content

-Breed Details should be more
visible as a button

-Text in the scanner page
should be changed

-Yellow button on an orange
background is not very
readable

-The match percentages
should be shown for all 3
matches

-History should sort newest to
oldest

-Tab buttons should be easier
to read

-More color contrast with tab
buttons

-Swipe to go back

User 1 User 2 User 3Question

Page 54

	 	 -the Select Photo button has been adjusted, the color matches all other fonts and 	
	 	 it was made more pronounced

	 	 -the photo picker text has been changed to “Select Photo” “From” 
	 	 -after uploading a photo the scanner page now displays “This cat shares the 	 	
	 	 features of” if the ML model detects a cat or “This is not a cat but if it was it would 	
	 	 be” if it does not detect a cat

	 	 -three labels are now presented and they are all buttons. They present an 	 	
	 	 encyclopaedia icon, awarded label and matching percentage. Upon pressing the 	
	 	 	 button the matching encyclopaedia page is opened.

-History page
	 	 -the table in the history screen was made to sort newest to oldest

	 	 -the table in the history screen was made to present the photo icon and time stamp

	 	 -the history entries themselves now store all 3 labels with match rates

	 	 -the history screen presents the saved photo

	 	 -the text is now aligned in the table

	 	 -the photos are now aligned in the table

	 	 -the entries now can be deleted by swiping to the right on the entry and pressing 	
	 	 delete

How the app looked at the time of Round 2 testing after implementing the aforementioned
changes:

Figure 99: User Testing App Mid Testing

Page 55

Round 2 Results

Question User 1 User 2 User 3

Q1:

On a scale of 1 to 10 how
would you rate the app
interface?

9/10 9/10 9/10

Q2:

What part of the app was your
favorite and why?

Same as before. Same as before. Same as before.

Q3:

What part of the app was your
least favorite and why?

None None None

Q4:

What would you change in the
app if anything and why?

Paw seems like a button.
Make header bold.

Deleting history is not obvious
- android user

Make the screen with the paw
print home screen that you can
go back to.

Non-iPhone user - swipe to
delete not obvious.

Q5:

Is the color scheme of the app
clear to read? If not please
highlight areas that are
problematic.

Paw should not have a circle.
Pictures should be same ratio.
Button should have a 3d effect
to be more obvious.

Yes Yes

Q6:

Is the information presented by
the application detailed
enough?

Yes much better now.
 Yes Yes

Q7:

Does the wording throughout
the app clearly indicate usage
steps?

Yes Yes Yes

Q8:

What would you change about
the Scanner tab(if not
indicated before)?

Get rid of the circle around the
paw

No Header bold so it is easier to
notice.

Q9:

What would you change about
the Encyclopedia tab(if not
indicated before)?

Get rid of the circle around the
paw

No No

Q10:

What would you change about
the History tab(if not indicated
before)?

Pictures in the same ratio.
 Delete function more obvious Header bold so it is easier to
notice.

Notes — — Pawprint looks like a button.

Indicated changes: -Paw icon should not have a
circle

-Header should be bold

-History screen photo icons
should be same ratios

-Swipe to delete is not obvious
 -Make the starting screen a
Home Screen that you can go
back to

-Swipe to delete is not obvious

-Bolder header

-Change the paw print icon so
it does not look like a button

Page 56

Following changes have been implemented based on user feedback:

	 -General Changes

	 	 -Paw icon does not have a circle around it now

	 	 -Headers have been made more visible

	 -Scanner Page

	 	 -The welcome page is now a home page that you can go back to by pressing 	 	
	 	 “Clear Page”

The swipe to delete function will be explained in the user manual.

This is how the app presented after implementing aforementioned changes:

Figure 100: User Testing Final App State

	 	 	 	 	 	 	 	 	 	 	 	 	

Page 57

User Testing Summary

Throughout the conducted user testing a plethora of changes desired by users have been
implemented. The changes have made the app interface much clearer and easier to read. The
additional functionality that was added were key functions to ensure user comfort. During the first
round of testing the users all had very similar feedback concerning interface clarity. 2 out of the 3
users are people with visual impairments. The color clashes and hard to read labels were a big
issue. The wording throughout the app was thought to not always be very appropriate. Users
were not happy with the history page sorting history entries by oldest to newest and no ability to
delete entires. The tests indicated that not enough detailed information was presented and stored
by the app. This feedback has been taken to improve the app. Over 23 key changes resulted from
the first round of the user testing.

The second part of user tests brought much less call for changes from the users which meant that
implemented changes brought a big improvement to the app. This turn there was only a single
request for new functionality - adding a home screen. Other changes were very minor visual
improvements. When it comes to the swipe to delete not being obvious - both users reporting that
feedback are native Android users where that is not common. The third user that is a native iOS
user did not report that as an issue. This will not be tackled by any software changes and will
simply be explained in the app manual.

The amount of changes desired by users per Test Round

Figure 101: User Testing Changes Desired By Users Graph

Page 58

0

3

6

9

12

Round 1 Round 2
User 1 User 2 User 3 User 1 User 2 User 3

User 1 User 2 User 3

User App Rating Per Round

Figure 102: User Testing App Rating Graph

The biggest changes when comparing the app version before any tests conduced versus the
version after all tests were concluded are shown on the next page (before, after):

Page 59

0.00%

25.00%

50.00%

75.00%

100.00%

Round 1 Round 2
User 1 User 2 User 3 Average User 1 User 2 User 3 Average

73%
90%

80%
90%

70%

90%

70%

Median

User 1 User 2 User 3 Average

1. Home Screen

Figure 103: User Testing Home Screen Before	 Figure 104: User Testing Home Screen After

2. Result Screen

Figure 105: User Testing Result Screen Before	 Figure 106: User Testing Result Screen After

Page 60

3. History Item Screen

Figure 107: User Testing History Item Before	 Figure 108: User Testing History Item After

Page 61

5.1.4 Market Comparison

On the iOS App Store I was able to find 4 apps that offer similar functionality to the Orion: Cat
Scanner & Encyclopaedia app.

1. Cats Pedia: Breed identifier

2. Cat Scanner Breed Identifier

Functionality CatsPedia Orion: Cat Scanner &
Encyclopedia

Cat Breed Encyclopedia • Consists of 95 breeds

• Some breeds are missing data

• You can filter by traits and name

• You can favorite breeds

• Presents detailed information

• Different layouts available

• Consists of 20 breeds

• No missing data

• No filtering

• No favorite function

• Presents generalized

information with external links
to learn more

• Single layout

History Page • Has history page

• Swipe to delete

• Needs internet connection to

load

• Presents small icon of the

saved photo

• Saves top 3 results

• Saves date & time

• Has history page

• Swipe to delete

• Works offline

• Presents small icon of the

saved photo as well as a big
photo

• Saves top 3 results

• Saves date & time

Classification Page • Needs internet connection to
load

• Passed data outside of your
device

• Takes time to load results

• Buggy - freezes app

• Low accuracy on tested photos

• Works fully offline

• Keeps all the data on your

device

• Results instant

• Bug free

• High accuracy on tested photos

Others • Ads

• Additional Functionality:

- Settings

• Buggy photo picker

• Ad free

• No Additional Functionality

• Bug free photo picker

Functionality Cat Scanner Orion: Cat Scanner &
Encyclopedia

Cat Breed Encyclopedia • Consists of 59 breeds(includes
wild cats such as Lions)

• You can filter by traits and name

• Presents detailed information

• Consists of 20 breeds

• No filtering

• Presents generalized

information with external links
to learn more

Page 62

3. Breed Recognizer

History Page • Has history page

• Swipe to delete & more

• Delete all history

• Needs internet connection to

load

• Presents small icon of the

saved photo as well as a big
photo

• Saves top 3 results

• Does not save date & time

• Has history page

• Swipe to delete

• Delete single entires

• Works offline

• Presents small icon of the

saved photo as well as a big
photo

• Saves top 3 results

• Saves date & time

Classification Page • Needs internet connection to
load with limited Offline option

• Passed data outside of your
device

• Takes time to load results

• High accuracy on tested photos

• Works fully offline

• Keeps all the data on your

device

• Results instant

• Bug free

• High accuracy on tested photos

Others • Ads

• Additional Functionality:

- Social Media

- Sharing Results

- Settings

• Ad free

• No Additional Functionality

Functionality Cat Scanner Orion: Cat Scanner &
Encyclopedia

Functionality Breed Recognizer Orion: Cat Scanner &
Encyclopedia

Cat Breed Encyclopedia • Consists of 68 breeds

• No filtering

• Presents extremely limited

information

• No photos

• Consists of 20 breeds

• No filtering

• Presents generalized

information with external links
to learn more

• Has example photo per breed

History Page • No history page • Has history page

• Swipe to delete

• Delete single entires

• Works offline

• Presents small icon of the

saved photo as well as a big
photo

• Saves top 3 results

• Saves date & time

Classification Page • Needs internet connection to
load

• Passed data outside of your
device

• Takes a very long time to load
results

• Accuracy not checked as would
not load results

• Works fully offline

• Keeps all the data on your

device

• Results instant

• Bug free

• High accuracy on tested photos

Page 63

4.Cat Breed Identifier: Pet Scan

Others • Ads

• Very poor experience, app is

very slow and crashes a lot

• Additional Functionality:

- List your pet as missing

- Adopt a pet

- Supports dogs

• Ad free

• Very smooth fast crash free

experience

• No Additional Functionality

Functionality Breed Recognizer Orion: Cat Scanner &
Encyclopedia

Functionality Cat Breed Identifier: Pet Scan Orion: Cat Scanner &
Encyclopedia

Cat Breed Encyclopedia • Consists of 80 breeds

• No filtering

• Search by name

• Presents general information

• Multiple photos

• Consists of 20 breeds

• No filtering

• No search function

• Presents generalized

information with external links
to learn more

• Single photo per breed

History Page • History page is locked behind a
paywall so it was not tested

• Has history page

• Swipe to delete

• Delete single entires

• Works offline

• Presents small icon of the

saved photo as well as a big
photo

• Saves top 3 results

• Saves date & time

Classification Page • Needs internet connection to
load

• Passed data outside of your
device

• Takes a long time to load results

• Accuracy was average on

tested photos

• Works fully offline

• Keeps all the data on your

device

• Results instant

• Bug free

• High accuracy on tested photos

Others • Ads

• Additional Functionality such as

offline mode and history was
not tested as locked behind
paywall

• Ad free

• No Additional Functionality

Page 64

Chapter 5.1.5 Evaluation Summary

This chapter focused on the evaluation of Orion: Cat Scanner & Encyclopaedia.

The App meets all the planned requirements. All functionality has been implemented fully and
tested thoroughly.

After conducting User Tests the app was improved greatly thanks to all the changes proposed by
the users. Throughout it’s development the app saw tremendous growth and is now a very user
friendly and fast experience.

Compared to other apps that offer similar functionality on the market Orion: Cat Scanner &
Encyclopaedia performs very well. The main advantages compared to other apps were: data
security that is inherent with local operations only as no data passes to a server there is no risk of
data leaks, no need for network connection for the app to work allows the user to conduct the
classification anywhere and it provides a much smoother experience as there is no delay for the
model prediction - the results are instantaneous which no other app that was compared offered.

The evaluation results are very satisfactory proving that Orion: Cat Scanner & Encyclopaedia is a
very high quality application with intuitive and fast user experience.

Page 65

Chapter 5.2: Machine Learning Evaluation

5.2.1 Cat Breed Classification

The final model proved to be highly accurate as confirmed in evaluation.

During the training process the model achieved an average training accuracy of over 92% with
average loss comfortably staying under 0.23.

Validation training accuracy reached over 90% multiple times during the training process with loss
staying under 0.5 for the most part. The Validation variables have a much grater variability. The
graphs from a 500 epoch long training are presented below:

The additional evaluation metrics measured were implemented.

The other metrics measured were a test accuracy done on a dataset of 675 images, F1 score,
ROC-AUC curve, Precision and Recall. Results:

Test accuracy is : 94.23999786376953 %
F1 score is 0.9472836163230793
ROC- AUC score is 0.9988429967866688
Precision is: 0.9433090515707214
Recall is: 0.943981685229485
A confusion matrix produced a very satisfying result:

Figure 109: Machine Learning Breed Classification Confusion Matrix

Page 66

5.2.2 Cat Detection Through Binary Classification

The model used for detection was proven to be highly accurate which was confirmed through
multiple accuracy metrics measured.

The test metrics used and their results were as follows:

Test accuracy is : 99.46646094322205 %
F1 score is 0.9885775467139927
ROC- AUC score is 0.9888515637278014
Precision is: 0.9870634922576683
Recall is: 0.9888515637278014

With a Confusion Matrix:

Figure 110: Machine Learning Cat Detection Through Binary Classification Confusion
Matrix

Page 67

Chapter 6: Project Management

Page 68

6.1 Project Development Plan

The projects first plan was created during challenge week in the Autumn of 2022. The main tool
for planning and management was Jira with Gitlab being used for storing and updating the
project.

A Gantt-Chart was produced using Google Sheets to track progress as well.

Three main milestones were identified. The milestones were identified based on the amount of
work and the stage of work to be done before a certain date. The end of challenge week was the
first milestone. It has a strict timeline and clearly laid out objectives to accomplish. Each
milestone was represented as a Jira Epic with Stories representing complex objectives and
subtasks breaking down the complex objectives into simple tasks accomplishable in a span of a
week to few weeks max.

Each Week there would be a Sub-Task titled “Week XX Summary”. This task was used to
summarise the weekly progress and make meetings with the project supervisor easy to navigate
through.

Challenge Week

During Challenge Week 6 Stories were identified with 7 sub tasks. The duration of the Challenge
Week was just 5 days therefore the Issue Complexity is very low.

Figure 111: Gantt-Chart Challenge Week

Road to Week 11

The Autumn term ended with the Interim Oral Interview. This whole milestone was put into an Epic
fittingly called “Road to Week 11”. This epic aimed to accomplish three major goals: develop a
working beta version of the app with fully implemented functionality, train a Machine Learning
model capable of classifying cat breeds with high accuracy. This culminated with the Interim Oral
Interview. The hardest challenge of planning out Complex tasks to be done over a large period of
time is approximating how much time each issue would take. This would prove to be a big
problem during this Epic causing multiple planned tasks to be postponed to the next Epic.

These being additional app functionality(Encyclopaedia and History) and achieving high model
accuracy. They were moved to the next Epic.

As seen below the tasks that were failed to be accomplished have 0% marked to them.

Page 69

Figure 112: Gantt-Chart Road to Week 11

Road to Final Report

This milestone is the final of all three. It aims to achieve three major goals: finish the App, prepare
for the open day and create the final report. The App Work Story includes the moved tasks from

the previous Epic.

Figure 113: Gantt-Chart Road To Final Report

Page 70

6.2 Management Tools

 As previously mentioned the tools used in planning and management of the project were: Jira,
gitlab and a Google Spreadsheets Gantt-Chart. Jira being the most vital one.

Jira

The main tool to manage the project was Jira, it was used to track progress of all the goals. Jira
was updated at least weekly with detailed descriptions of progress that sometimes included
attachments such as screenshots. The previous subchapter reviewed the split of goals into Epics,
Stories and subtasks.

Epics would be titled appropriately for the mile stone they have to achieve. They would hold a
brief description of the milestone as well. Example below:

Figure 114: Jira Road to Final Report

Stories would hold titles to represent the category of sub tasks they would hold as well as the
description of the overall Story goal. Example below:

Figure 115: Jira Open Day Preparation

Page 71

Sub-tasks would hold titles including the week they were meant to be done in. The detailed
progress on the tasks would be described in the sub-task comments as well as attachments
showing off the progress. Example below:

Figure 116: Jira: Functionality Implementation Encyclopaedia

Jira was also used to process feedback from the project supervisor and was the main focus of
weekly meetings. This was made easier with the Weekly Summary subtasks that would hold
weekly progress highlights. Example below:

Figure 117: Jira Week 24 Summary

Page 72

GitLab

This tool was used to storing and updating project files. Each commit would describe the
changes included in the commit. The GitLab usage was low during the first as my unfamiliarity
with Xcode software and the poor Git integration proved regular commits difficult. Due to time
constraints I decided this was not high priority and gave my time to more important tasks. Once I
learned how to efficiently commit changes to GitLab the commits would take place any time a
working change was implemented.

The commits table can be seen below:

Figure 118: Gitlab Commits

Gantt-Chart

To allow for easy visual progress tracking I have created a Gantt chart using Google
Spreadsheets. This Gantt chart would contain all the important Jira Epics, Stories and subtasks.
Feedback and Weekly Updates were not included in the Gantt-Chart.

On the Gantt chart you can see which subtasks are linked to which Stories and which Stories are
linked to which Epics. I would change the progress % of every issue regularly and implement
updates whenever necessary. The Gantt-Chart can be seen on the next page: 

Page 73

Figure 119: Gantt-Chart(2)

Page 74

&(����*$177�&+$57
���
��������� 'HYHORSLQJ�$�PRELOH�DSS�XVLQJ�PDFKLQH�OHDUQLQJ�IRU�FDW�EUHHG�UHFRJQLWLRQ ������ 2ODI�%RJXV

���������� ���������� ����� 1�$

�������������� �����Ɏ�ŏ��������������� �����ɏ�ŏ��������Ė���������

������� ������������ ���������� ���������
������
����

����
����

��������
�����	������
�������� �����Ɏ ��

ɏ
��
ɐ

��
ɑ

��
ɒ

��
ɓ

��
ɔ

��
ɕ

��
ɖ

��
Ɏɍ

��
ɎɎ

��
Ɏɓ

��
Ɏɔ

��
Ɏɕ�

��
Ɏɖ

��
ɏɍ

��
ɏɎ

��
ɏɏ

��
ɏɐ

��
ɏɑ�

��
ɏɒ

��
ɏɓ

��
ɏɔ

��
ɏɕ

��
ɏɖ

�
ɐɍ

�ɐɍɎɍɖɏŏɏ �Ş� �������������������������� (SLF :HHN�� :HHN�� ��GD\V Ɏɍɍʡ

�ɐɍɎɍɖɏŏɐ �ɐɍɎɍɖɏŏɏ ������������������������� ����� �����Ɏ �����Ɏ ɒ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɑ �ɐɍɎɍɖɏŏɏ ��������������������������� ����� �����Ɏ �����Ɏ ɒ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɒ �ɐɍɎɍɖɏŏɏ ���������������������� ����� �����Ɏ �����Ɏ ɒ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɕ �ɐɍɎɍɖɏŏɏ ������������� ����� �����Ɏ �����Ɏ ɒ����� Ɏɍɍʡ

��ɐɍɎɍɖɏŏɖ �ɐɍɎɍɖɏŏɏ ������������������������� ����� �����Ɏ �����Ɏ ɒ����� Ɏɍɍʡ

��ɐɍɎɍɖɏŏɑɎ �ɐɍɎɍɖɏŏɏ ���������������������� ����� �����Ɏ �����Ɏ ɒ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɑɏ ��ɐɍɎɍɖɏŏɖ
����������� ���ŏ���� �����Ɏ �����Ɏ ɒ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɑɐ ��ɐɍɎɍɖɏŏɖ ������������������� ���ŏ���� �����Ɏ �����Ɏ ɒ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɓ �ɐɍɎɍɖɏŏɒ ��������� ���ŏ���� �����Ɏ �����Ɏ ɒ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɔ �ɐɍɎɍɖɏŏɒ ���������
�� ���ŏ���� �����Ɏ �����Ɏ ɒ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɎɐ �ɐɍɎɍɖɏŏɎɎ ������������������� ���ŏ���� �����Ɏ �����Ɏ ɒ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɎɕ �ɐɍɎɍɖɏŏɒ �������
��� ���ŏ���� �����Ɏ �����Ɏ ɒ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɏɏ �ɐɍɎɍɖɏŏɏ
	���������������������������Ō�������
����������� ���ŏ���� �����Ɏ �����Ɏ ɒ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɎɍ �Ş� �������������ɎɎ (SLF :HHN�� :HHN��� ��:HHNV Ɏɍɍʡ

�ɐɍɎɍɖɏŏɎɎ �ɐɍɎɍɖɏŏɎɍ ����������������� ����� �����ɏ �����ɎɎ ɖ������ Ɏɍɍʡ

�ɐɍɎɍɖɏŏɎɏ �ɐɍɎɍɖɏŏɎɍ ���������������� ����� �����ɏ �����ɎɎ ɖ������ Ɏɍɍʡ

�ɐɍɎɍɖɏŏɎɑ �ɐɍɎɍɖɏŏɎɎ ����������������������� ���ŏ���� �����ɑ �����ɑ Ɏ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɎɖ �ɐɍɎɍɖɏŏɎɏ
���������������������ɑ� ���ŏ���� �����ɑ �����ɑ Ɏ����� Ɏɍɍʡ

��ɐɍɎɍɖɏŏɎɒ �ɐɍɎɍɖɏŏɎɎ ������������������������������� ���ŏ���� �����ɒ �����ɒ Ɏ����� Ɏɍɍʡ

��ɐɍɎɍɖɏŏɏɐ �ɐɍɎɍɖɏŏɎɏ
	���������������������������Ō��������������
������ ���ŏ���� �����ɓ �����ɓ Ɏ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɏɍ �ɐɍɎɍɖɏŏɎɏ
���������������������ɓ� ���ŏ���� �����ɓ �����ɓ Ɏ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɎɓ �ɐɍɎɍɖɏŏɎɎ ��������������������������������� ���ŏ���� �����ɔ �����ɔ Ɏ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɏɑ �ɐɍɎɍɖɏŏɎɏ
	���������������������������Ō��������������
������� ���ŏ���� �����ɕ �����ɕ Ɏ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɒɏ �ɐɍɎɍɖɏŏɎɎ ������	�������������� ���ŏ���� �����ɕ �����ɕ Ɏ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɎɔ �ɐɍɎɍɖɏŏɎɎ ���������������������������������� ���ŏ���� �����ɖ �����ɖ Ɏ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɏɍ �ɐɍɎɍɖɏŏɎɏ
���������������������ɖ ���ŏ���� �����ɖ �����ɖ Ɏ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɏɒ �ɐɍɎɍɖɏŏɎɏ 	���������������������������Ō�������������� ���ŏ���� �����ɖ �����ɖ Ɏ����� ɍʡ

�ɐɍɎɍɖɏŏɏɓ �ɐɍɎɍɖɏŏɎɏ 	���������������������������Ō�������������� ���ŏ���� �����ɖ �����ɖ Ɏ����� ɍʡ

�ɐɍɎɍɖɏŏɏɎ �ɐɍɎɍɖɏŏɎɏ
���������������������Ɏɍ� ���ŏ���� �����Ɏɍ �����Ɏɍ Ɏ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɏɔ �ɐɍɎɍɖɏŏɎɏ
���������������
���������Ė����������
��������� ���ŏ���� �����Ɏɍ �����Ɏɍ Ɏ����� ɍʡ

&��������� 1�$ ��������	����������� (SLF :HHN��� :HHN��� ���:HHNV ɔɒʡ

�ɐɍɎɍɖɏŏɏɖ �ɐɍɎɍɖɏŏɏɕ ��������� ����� :HHN��� :HHN��� ɖ������ ɖɖʡ

�ɐɍɎɍɖɏŏɐɐ �ɐɍɎɍɖɏŏɏɕ ������������ ����� :HHN��� :HHN��� ɔ������ ɐɐʡ

�ɐɍɎɍɖɏŏɐɑ �ɐɍɎɍɖɏŏɏɕ ��������������������� ����� :HHN��� :HHN��� ɔ������ Ɏɍɍʡ

�ɐɍɎɍɖɏŏɓɕ �ɐɍɎɍɖɏŏɏɖ ����������������Ō����������������� ���ŏ���� :HHN��� :HHN��� Ɏ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɔɍ �ɐɍɎɍɖɏŏɏɖ ����������������Ō��������������� ���ŏ���� :HHN��� :HHN��� Ɏ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɓɑ �ɐɍɎɍɖɏŏɏɖ
	���������������������������Ō�����
������������ ���ŏ���� :HHN��� :HHN��� ɐ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɓɐ �ɐɍɎɍɖɏŏɏɖ
	���������������������������Ō���������
������ ���ŏ���� :HHN��� :HHN��� ɏ������ Ɏɍɍʡ

�ɐɍɎɍɖɏŏɕɒ �ɐɍɎɍɖɏŏɐɐ 	���������������� ���ŏ���� :HHN��� :HHN��� Ɏ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɐɎ �ɐɍɎɍɖɏŏɏɖ �������������������������� ���ŏ���� :HHN��� :HHN��� ɑ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɐɍ �ɐɍɎɍɖɏŏɏɖ ������������������� ���ŏ���� :HHN��� :HHN��� Ɏ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɐɏ �ɐɍɎɍɖɏŏɏɖ ����	���� ���ŏ���� :HHN��� :HHN��� Ɏ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɖɏ �ɐɍɎɍɖɏŏɏɖ ������������ ���ŏ���� :HHN��� :HHN��� Ɏ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɖɐ �ɐɍɎɍɖɏŏɏɖ ��������������	���������� ���ŏ���� :HHN��� :HHN��� Ɏ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɐɒ �ɐɍɎɍɖɏŏɐɐ �������������������� ���ŏ���� :HHN��� :HHN��� Ɏ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɐɍ �ɐɍɎɍɖɏŏɐɑ ��������������� ���ŏ���� :HHN��� :HHN��� Ɏ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɖɍ �ɐɍɎɍɖɏŏɐɑ ����������������� ���ŏ���� :HHN��� :HHN��� Ɏ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɖɓ �ɐɍɎɍɖɏŏɏɖ ������������������ɏ ���ŏ���� :HHN��� :HHN��� Ɏ����� Ɏɍɍʡ

�ɐɍɎɍɖɏŏɐɐ �ɐɍɎɍɖɏŏɖɕ ��������ɎŌ��������������������� ���ŏ���� :HHN��� :HHN��� ɓ������ ɍʡ

�ɐɍɎɍɖɏŏɐɐ �ɐɍɎɍɖɏŏɖɖ ��������ɏŌ����������������������������� ���ŏ���� :HHN��� :HHN��� ɓ������ ɍʡ

�ɐɍɎɍɖɏŏɐɐ �ɐɍɎɍɖɏŏɎɍɍ ��������ɐŌ����������������������� ���ŏ���� :HHN��� :HHN��� ɓ������ ɍʡ

�ɐɍɎɍɖɏŏɐɐ �ɐɍɎɍɖɏŏɎɍɎ ��������ɑŌ������������������������������� ���ŏ���� :HHN��� :HHN��� ɓ������ ɏɍʡ

�ɐɍɎɍɖɏŏɐɐ �ɐɍɎɍɖɏŏɎɍɏ ��������ɒŌ�����������������Ō���������� ���ŏ���� :HHN��� :HHN��� ɓ������ ɍʡ

�ɐɍɎɍɖɏŏɐɐ �ɐɍɎɍɖɏŏɎɍɐ
��������ɓŌ�����������������Ō���������������

���ŏ���� :HHN��� :HHN��� ɓ������ ɍʡ

�ɐɍɎɍɖɏŏɐɐ �ɐɍɎɍɖɏŏɎɍɑ
��������ɔŌ��������������������

���ŏ���� :HHN��� :HHN��� ɓ������ ɍʡ

�ɐɍɎɍɖɏŏɐɐ �ɐɍɎɍɖɏŏɎɍɒ ��������ɕŌ������������Ė������������� ���ŏ���� :HHN��� :HHN��� ɓ������ ɍʡ

�ɐɍɎɍɖɏŏɏɖ �ɐɍɎɍɖɏŏɎɍɓ 	������������������� ���ŏ���� :HHN��� :HHN��� ɓ������ ɍʡ

�ɐɍɎɍɖɏŏɐɖ �ɐɍɎɍɖɏŏɐɐ 	������������������������ ���ŏ���� :HHN��� :HHN��� Ɏ����� ɍʡ

�ɐɍɎɍɖɏŏɐɕ �ɐɍɎɍɖɏŏɐɐ ����������������������� ���ŏ���� :HHN��� :HHN��� Ɏ����� ɍʡ

�ɐɍɎɍɖɏŏɓɒ �ɐɍɎɍɖɏŏɏɖ ��������������� ���ŏ���� :HHN��� :HHN��� Ɏ����� ɍʡ

�ɐɍɎɍɖɏŏɑɍ �ɐɍɎɍɖɏŏɐɐ 	���������������������� ���ŏ���� :HHN��� :HHN��� Ɏ����� ɍʡ

�ɐɍɎɍɖɏŏɐɓ �ɐɍɎɍɖɏŏɐɑ ���������������������� ���ŏ���� :HHN��� :HHN��� Ɏ����� ɍʡ

�ɐɍɎɍɖɏŏɐɔ �ɐɍɎɍɖɏŏɐɐ ������������������������ ���ŏ���� :HHN��� :HHN��� Ɏ����� ɍʡ

Chapter 7: Conclusion 

Page 75

7.1 Technical Accomplishments

This project was able to accomplish all the planned technical achievements.

This being a fully functioning mobile app operating on iOS and is optimised for iPhones.

The app allows for Cat Breed classification from existing photos as well as from a photo taken
within the app. The classification results and the photo is then stored in an accessible way to the
user. The app contains an encyclopaedia page that contains key information about each
supported cat breed as well as external links for more detailed information. The app contains a
history screen which presents all the saved data from previous classification results. The data can
be deleted if the user wishes. The photos are compressed before being saved.

The App utilises two machine learning models. One model is used for cat breed classification. It
supports 20 breeds and has an accuracy of 94%. The model was trained on a manually expanded
dataset.

The other model used by the app performs binary classification to determine wether the supplied
photo contains a cat or not.

These models were converted to a coreML model in order for it to work with the iOS app.  

Page 76

7.2 Summary Thoughts

The project aimed to develop an iOS app capable of utilising machine learning models for
purposes of identifying cat breeds from photos. The app was to be user friendly and have
functionalities such as an encyclopaedia that would present the user with key information
pertaining the cat breeds supported by machine learning models, saving data processed by the
user and presenting it in an accessible way. The machine learning models were to be of high
accuracy and wide classification capabilities.

These aims were all achieved fully. Taking an enormous amount of time, effort and focus.

The project was managed using Jira. It being a key tool that allowed for splitting extremely
complex tasks into small single issues of much reduced complexity.

Throughout the duration of the project I have felt extreme pressure to achieve best results
possible.

Not having a lot of experience with iOS software development or Machine Learning every task I
tackled involved a learning process. I had to identify the task at hand, see examples of similar
issues being implemented through code, plan how to implement it in my program and then
actually code it. Some tasks would turn out much easier than previously assumed and some were
much more complex in their implementation than ever expected.

Having known now what I have learned in the duration of the project I can confidently say I could
implement the same quality software within a month.

The skills I have gained thanks to this project are invaluable.

The research and studies were the most time consuming part of the project.

Having achieved all of the planned goals does not mean the project could not be improved.

With more time the application could be immensely improved.

The dataset that the classification model was trained on definitely needs expanding to increase
accuracy and supported breeds.

The 2 label model used for recognising if the supplied image contains a cat could be implemented
through a different model or trained on a better dataset. During the final weeks of the summer
term I contemplated implementing a model capable of detecting multiple cats on the image and
then classifying each detected cat separately. This was determined not feasible in the given
timeframe.

The app could have expanded functionality such as an inbuilt social network for sharing cat
images with other users, the encyclopaedia page could be enriched to include more information
for each breed and more images. There are numerous features that could be considered to be
added to the app. I would have loved to be able to publish the app on the iOS App Store but was
unable to do so due to the costs.

I am very proud of the work I was able to accomplish.  

Page 77

References

[1] W. Rawat and Z. Wang, “Deep convolutional neural networks for Image Classification: A
Comprehensive Review,” Neural Computation, vol. 29, no. 9, pp. 2352–2449, 2017.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional
Neural Networks,” Communications of the ACM, vol. 60, no. 6, pp. 84–90, 2017.

[3] C. Szegedy, W. Liu, J. Yangqing, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich, “Going deeper with convolutions,” 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2015.

[4] K. Simonyan and A. Zisserman, “VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-
SCALE IMAGE RECOGNITION,” ICLR 2015, 2015.

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[6] M. Tan and Q. V. Le, “EfficientNet: Rethinking Model Scaling for Convolutional Neural
Networks,” International Conference on Machine Learning, 2019.

[7] R. Peden, “Cat or not - an image classifier using Python and keras,” CodeProject, 01-
May-2019. [Online]. Available: https://www.codeproject.com/Articles/4023566/Cat-or-Not-An-
Image-Classifier-using-Python-and-Ke.

[8] S. Gulati, “Creating and deploying a cat-dog image classifier using tensorflow and streamlit-
part 1,” Medium, 15-Jul-2021. [Online]. Available: https://medium.com/analytics-vidhya/creating-
and-deploying-a-cat-dog-image-classifier-using-tensorflow-and-streamlit-part-1-2672fc184601.

[9] V. Valkov, “Building a cat detector using convolutional neural networks - tensorflow for hackers
(part III),” Medium, 13-Jun-2017. [Online]. Available: https://venelinvalkov.medium.com/
tensorflow-for-hackers-part-iii-convolutional-neural-networks-c077618e590b.

[10] P. Kalkman, “Recognizing cats and dogs with tensorflow,” Medium, 11-Jan-2021. [Online].
Available: https://towardsdatascience.com/recognizing-cats-and-dogs-with-
tensorflow-105eb56da35f.

[11] D. F. Team, “Cats vs dogs classification (with 98.7% accuracy) using CNN Keras - Deep
Learning Project for Beginners,” DataFlair, 25-Aug-2021. [Online]. Available: https://data-
flair.training/blogs/cats-dogs-classification-deep-learning-project-beginners/.

[12] J. Brownlee, “How to classify photos of dogs and cats (with 97% accuracy),”
MachineLearningMastery.com, 07-Dec-2021. [Online]. Available: https://
machinelearningmastery.com/how-to-develop-a-convolutional-neural-network-to-classify-photos-
of-dogs-and-cats/.

[13] O. M. Parkhi, A. Vedaldi, A. Zisserman, and C. V. Jawahar, “The Oxford-IIIT Pet Dataset,”
Visual Geometry Group - University of Oxford. [Online]. Available: https://www.robots.ox.ac.uk/
~vgg/data/pets/.

[14] ma7555, “Cat breeds dataset,” Kaggle, 12-Dec-2019. [Online]. Available: https://
www.kaggle.com/datasets/ma7555/cat-breeds-dataset.

[15] N. Mohtar, “Cat Breed Classification system using CNN - nurafiqah mohtar,” YouTube, 01-
Feb-2021. [Online]. Available: https://www.youtube.com/watch?v=rNgrYfaiYCs&t=181s.

Page 78

[16] N. Thammarat, “Inceptionv3 with ROC- AUC 92%,” Kaggle, 07-Mar-2023. [Online].
Available: https://www.kaggle.com/code/thammaratnunum/inceptionv3-with-roc-auc-92-e459a2.

[17] N. Renotte, “Build a deep CNN image classifier with any images,” YouTube, 25-Apr-2022.
[Online]. Available: https://www.youtube.com/watch?v=jztwpsIzEGc.

[18] I. Developer, “Dog breed classification using Tensorflow Keras | Building an image classifier,”
YouTube, 07-Mar-2020. [Online]. Available: https://www.youtube.com/watch?v=Ku6wkRQIYuc.

[19] M. Ganeson, “Dog breed classification using CNNS,” Medium, 13-Aug-2021. [Online].
Available: https://mitraganeson.medium.com/dog-breed-classification-using-
cnns-73596aa37a06.

[20] “Dog breed identification,” Kaggle. [Online]. Available: https://www.kaggle.com/competitions/
dog-breed-identification/code.

[21] “Overfit and underfit : Tensorflow Core,” TensorFlow. [Online]. Available: https://
www.tensorflow.org/tutorials/keras/overfit_and_underfit.

[22] N. Schlüter, “Don't Overfit! - how to prevent overfitting in your deep learning models,” Medium,
05-Jun-2019. [Online]. Available: https://towardsdatascience.com/dont-overfit-how-to-prevent-
overfitting-in-your-deep-learning-models-63274e552323.

[23] U. Vijay, “Early stopping to avoid overfitting in neural network- Keras,” Medium, 13-Oct-2020.
[Online]. Available: https://medium.com/zero-equals-false/early-stopping-to-avoid-overfitting-in-
neural-network-keras-
b68c96ed05d9#:~:text=Too%20many%20epochs%20can%20lead,improving%20on%20the%20
validation%20dataset.

[24] MammothInteractive, “Train a machine learning model with createml | super simple,”
YouTube, 02-Nov-2021. [Online]. Available: https://www.youtube.com/watch?v=nCwIsGjN9XQ.

[25] Identify, “Let's create a simple login screen for iPhone in Xcode (swiftui),” YouTube, 16-
Nov-2021. [Online]. Available: https://www.youtube.com/watch?v=l7obVQObdRM.

[26] iOS Academy, “Swiftui 4: New Photo Picker tutorial – WWDC 2022,” YouTube, 11-Jul-2022.
[Online]. Available: https://www.youtube.com/watch?v=crULPMS7Uxs.

[27] Cracking Code with Dave, “Build and run app from Xcode onto actual device in Xcode
12.15.1,” YouTube, 21-Sep-2021. [Online]. Available: https://www.youtube.com/watch?
v=TlgumE2xe_E.

[28] Indently, “Splashscreen for IOS in Swiftui tutorial 2022 (xcode),” YouTube, 25-Jan-2022.
[Online]. Available: https://www.youtube.com/watch?v=0ytO3wCRKZU.

[29] Intently, “How to create a bottom navigation bar with TabView in Xcode (swiftui / ios),”
YouTube, 22-Oct-2021. [Online]. Available: https://www.youtube.com/watch?v=TgvYFfCjDMo.

[30] iOS Academy, “Swift for beginners: Select photo from library IOS (2020),” YouTube, 30-
Jan-2020. [Online]. Available: https://www.youtube.com/watch?v=yggOGEzueFk.

[31] S. Allen, “SWIFTUI photo picker - compressed images, uiviewcontrollerrepresentable,”
YouTube, 29-Jul-2021. [Online]. Available: https://www.youtube.com/watch?v=V-kSSjh1T74.

Page 79

[32] iOS Academy, “How to add images to IOS app - swift (2020),” YouTube, 02-Feb-2020.
[Online]. Available: https://www.youtube.com/watch?v=Tb9J08y5a4w.

[33] F. Hussain, “Tutorial 31: How to upload and display image on IOS app | how to add images to
IOS app swift 2021,” YouTube, 14-Jun-2021. [Online]. Available: https://www.youtube.com/
watch?v=jaagKolaDSA.

[34] iOS Academy, “IOS 15 photo picker tutorial (2021, Xcode 13, IOS 15) - IOS for Beginners,”
YouTube, 16-Jun-2021. [Online]. Available: https://www.youtube.com/watch?v=LlZUQW3Zj9c.

[35] P. Hudson, “Importing an image into swiftui using phpickerviewcontroller – instafilter swiftui
tutorial 9/12,” YouTube, 03-Dec-2021. [Online]. Available: https://www.youtube.com/watch?
v=-4wBQSr-3yo.

[36] P. Hudson, “Wrapping a uiviewcontroller in a swiftui view – Instafilter Swiftui tutorial 5/12,”
YouTube, 01-Dec-2021. [Online]. Available: https://www.youtube.com/watch?v=qKAlsts4qFA.

[37] MammothInteractive, “Load coreml model into Xcode | Super Simple,” YouTube, 24-
Oct-2021. [Online]. Available: https://www.youtube.com/watch?v=uRFxyk-xGE4.

[38] MammothInteractive, “Use coreml model in swiftui,” YouTube, 25-Oct-2021. [Online].
Available: https://www.youtube.com/watch?v=8Gl33PpOlJg.

[39] MammothInteractive, “Compile coreml model in Xcode,” YouTube, 27-Oct-2021. [Online].
Available: https://www.youtube.com/watch?v=qIX5vHhxjR8.

[40] MammothInteractive, “Test createml model with coreml in an app | super simple,” YouTube,
03-Nov-2021. [Online]. Available: https://www.youtube.com/watch?v=UaZfa_rddME.

[41] iOS Academy, “CoreML basics in IOS (swift 5, Machine Learning, Xcode 12) - 2022 IOS
development,” YouTube, 20-Mar-2021. [Online]. Available: https://www.youtube.com/watch?
v=OxKHt1NwOHw.

[42] S. Lynch, “My images 1: Photo Picker and camera in Swiftui,” YouTube, 26-Sep-2021.
[Online]. Available: https://www.youtube.com/watch?v=yMC16EZHwZU.

[43] Kavsoft, “Swiftui popup image picker - custom popup's, image picker modifier - xcode 13 -
swiftui tutorials,” YouTube, 24-May-2022. [Online]. Available: https://www.youtube.com/watch?
v=dQUgCyb-OMU.

[44] Azamsharp, “The Complete Guide for Integrating Camera and Photo Library in Swiftui,”
YouTube, 11-Feb-2020. [Online]. Available: https://www.youtube.com/watch?v=Y-65T0YBOm4.

[45] CodeWithChris, “How to create an app Icon (2019),” YouTube, 28-Aug-2018. [Online].
Available: https://www.youtube.com/watch?v=bOjoBgtjwt4.

[46] iOS Academy, “How to create launch screen / image in swift 5 and Xcode 11,” YouTube, 18-
Apr-2020. [Online]. Available: https://www.youtube.com/watch?v=FdiqRol8weU.

[47] Azamsharp, “Saving images using Core Data,” YouTube, 21-Dec-2021. [Online]. Available:
https://www.youtube.com/watch?v=XqqIwJAqNZs.

[48] “Creating a core data model,” Apple Developer Documentation. [Online]. Available: https://
developer.apple.com/documentation/coredata/creating_a_core_data_model.

Page 80

[49] B. Jacobs, “Fetching records with core data: Type methods,” Cocoacasts. [Online]. Available:
https://cocoacasts.com/fetching-records-with-core-data-type-methods-in-swift.

[50] “Core Data Programming Guide: Fetching objects”, 27-Mar-2017. [Online]. Available: https://
developer.apple.com/library/archive/documentation/Cocoa/Conceptual/CoreData/
FetchingObjects.html.

[51] P. Hudson, “How to combine core data and swiftui,” Hacking with Swift, 12-May-2022.
[Online]. Available: https://www.hackingwithswift.com/books/ios-swiftui/how-to-combine-core-
data-and-swiftui.

[52] iOS Academy, “Swiftui dynamic list app (Xcode 12, 2021, swiftui 2.0) - IOS development,”
YouTube, 13-Feb-2021. [Online]. Available: https://www.youtube.com/watch?v=JCez4mclzdQ.

[53] “Xcode 11.4.1 - loading a launchscreen image from assets folder,” Stack Overflow, 01-
Feb-1967. [Online]. Available: https://stackoverflow.com/questions/61662245/xcode-11-4-1-
loading-a-launchscreen-image-from-assets-folder.

[54] P. Hudson, “How to delete core data objects from SWIFTUI views,” Hacking with Swift, 19-
Jan-2023. [Online]. Available: https://www.hackingwithswift.com/quick-start/swiftui/how-to-
delete-core-data-objects-from-swiftui-views.

[55] P. Hudson, “How to delete a core data object,” Hacking with Swift, 28-May-2019. [Online].
Available: https://www.hackingwithswift.com/read/38/9/how-to-delete-a-core-data-object.

[56] “Swift 3 core data delete object,” Stack Overflow, 01-Mar-1963. [Online]. Available: https://
stackoverflow.com/questions/38017449/swift-3-core-data-delete-object.

[57] P. Hudson, “Deleting from a core data fetch request,” Hacking with Swift, 24-Nov-2021.
[Online]. Available: https://www.hackingwithswift.com/books/ios-swiftui/deleting-from-a-core-
data-fetch-request.

[58] “How to delete core data SWIFTUI?,” Stack Overflow, 01-Apr-1968. [Online]. Available:
https://stackoverflow.com/questions/68432307/how-to-delete-core-data-swiftui.

[59] “Delete/reset all entries in core data?,” Stack Overflow, 01-Apr-1956. [Online]. Available:
https://stackoverflow.com/questions/1077810/delete-reset-all-entries-in-core-data.

[60] “SWIFTUI update of deleted CoreData entities from different Tab,” SwiftUI update of deleted
CoreData... | Apple Developer Forums. [Online]. Available: https://developer.apple.com/forums/
thread/670564.

[61] J. Codeos, “How to save, fetch, update and delete data from core data using swift: John Codeos
- blog with free IOS & Android Development Tutorials,” John Codeos, 13-Jun-2022. [Online].
Available: https://johncodeos.com/how-to-use-core-data-in-ios-using-swift/.

[62] Azamsharp, “Core data with swiftui (create, read, update and delete),” YouTube, 14-Feb-2021.
[Online]. Available: https://www.youtube.com/watch?v=_ui7pxU1rNI.

[63] “Core data: Quickest way to delete all instances of an entity,” Stack Overflow, 01-Jun-1956.
[Online]. Available: https://stackoverflow.com/questions/1383598/core-data-quickest-way-to-delete-
all-instances-of-an-entity.

Page 81

[64] “Core Data Object not nil after deleting from context,” Stack Overflow, 01-Jan-1968. [Online].
Available: https://stackoverflow.com/questions/67008050/core-data-object-not-nil-after-deleting-
from-context.

[65] P. Hudson, “How to delete core data objects from SWIFTUI views,” Hacking with Swift, 19-
Jan-2023. [Online]. Available: https://www.hackingwithswift.com/quick-start/swiftui/how-to-
delete-core-data-objects-from-swiftui-views.

[66] “How to get the size of data present in coredata store?,” Stack Overflow, 01-Mar-1961.
[Online]. Available: https://stackoverflow.com/questions/24178776/how-to-get-the-size-of-data-
present-in-coredata-store.

[67] “Compress a UIImage,” SwiftUI Advanced Handbook - Design+Code. [Online]. Available:
https://designcode.io/swiftui-advanced-handbook-compress-a-uiimage/.

[68] “In swift, how to reduce an image file size to a specific size? e.g 1MB,” In Swift, how to reduce
an image f... | Apple Developer Forums. [Online]. Available: https://developer.apple.com/forums/
thread/67564.

[69] “Date() formatting in SWIFTUI ‣ swiftlyrush,” SwiftlyRush, 29-Mar-2022. [Online]. Available:
https://www.swiftlyrush.com/date-formatting-in-swiftui/.

[70] B. Pasquier, “How to display date and time in Swiftui,” Benoit Pasquier, 17-Jan-2021.
[Online]. Available: https://benoitpasquier.com/date-formatter-swiftui/.

[71] S. Wongpatcharapakorn, “How to change background color of button in Swiftui,” Sarunw, 29-
Dec-2022. [Online]. Available: https://sarunw.com/posts/swiftui-button-background-color/.

[72] “Swiftui label tutorial – how to create and use label in swiftui,” Simple Swift Guide, 30-
Dec-2020. [Online]. Available: https://www.simpleswiftguide.com/swiftui-label-tutorial-how-to-
create-and-use-label-in-swiftui/.

[73] S. Simonng, “Swiftui Tabview Introduction and tab bar customization,” AppCoda, 03-
Oct-2020. [Online]. Available: https://www.appcoda.com/swiftui-tabview/.

[74] “Links in Swiftui,” Swift Anytime. [Online]. Available: https://www.swiftanytime.com/blog/
links-in-swiftui.

[75] A. Pereira, “Swiftui Button Tutorial: Customization,” kodeco.com. [Online]. Available: https://
www.kodeco.com/34851726-swiftui-button-tutorial-customization.

[76] F. Němeček, “How to get file size using FileManager + formatting,” Filip Němeček. [Online].
Available: https://nemecek.be/blog/22/how-to-get-file-size-using-filemanager-formatting.

[77] P. Hudson, “How to create a Tappable button,” Hacking with Swift, 02-Dec-2022. [Online].
Available: https://www.hackingwithswift.com/quick-start/swiftui/how-to-create-a-tappable-button.

[78] P. Hudson, “How to run some code when state changes using onChange(),” Hacking with Swift,
01-Dec-2022. [Online]. Available: https://www.hackingwithswift.com/quick-start/swiftui/how-to-
run-some-code-when-state-changes-using-onchange.

Page 82

[79]“How does the Imagepicker get analyzed by the MLMODEL?,” Stack Overflow, 01-May-1967.
[Online]. Available: https://stackoverflow.com/questions/63458277/how-does-the-imagepicker-get-
analyzed-by-the-mlmodel.

[80] “Advanced guide to inception V3 | cloud TPU | google cloud,” Google. [Online]. Available:
https://cloud.google.com/tpu/docs/inception-v3-advanced.

 [81] Larxel, “Dog and cat detection,” Kaggle, 12-May-2020. [Online]. Available: https://
www.kaggle.com/datasets/andrewmvd/dog-and-cat-detection.

[82] “Cat breeds,” Cat Breeds - Cat Breed Library | Purina UK. [Online]. Available: https://
www.purina.co.uk/find-a-pet/cat-breeds?page=%2C1.

[83] “Sand Cat,” Smithsonian's National Zoo, 24-May-2022. [Online]. Available: https://
nationalzoo.si.edu/animals/sand-cat.

  

Page 83

Appendixes

Page 84

Abstract
Title: Orion: Cat Scanner and Encyclopaedia - an iOS
App Implementing Machine Learning for Cat Breed
Classification 
Name: Olaf Bogus  
Reg No: 2006230

Supervisor: John Gan Category: AI/Machine Learning
Machine Learning allows us to achieve things never possible
before. 
I have implemented machine learning in a mobile app that helps cat
lovers learn more about their feline best friends.

Orion: Cat Scanner & Encyclopaedia analyses a photo supplied
from either your camera or library. It checks if the photo has a cat in
it and matches cat breeds.

This is done using a Keras model with InceptionV3 as the
convolutional base layer.

The classification model can detect up to 20 cat breeds with
following performance scores: Test accuracy is 90.40 %  
F1 score is 89%  
ROC- AUC score is 0.99

It has been trained on a custom assembled dataset consisting of
200 photos per cat breed. The App has been developed with Xcode
using SwiftUI.

The Orion App will tell you the top 3 matched breeds as well as
details for every breed with its cat breed encyclopaedia that
contains photos, key information and external links. 
It saves every analyzed photo and the assigned matches in the app
history which can be accessed and edited at any time.

Page 85

Poster

Page 86

O
laf B

ogus supervised by P
rofessor John G

an

O
rion: C

at S
canner &

 E
ncyclopedia -

an iO
S

 A
pp Im

plem
enting M

achine
Learning for C

at B
reed C

lassification

Cat Scanner and Encyclopedia

Learn M
ore About Your Cat!

Learn M
ore About Their

Needs &
 Behavior With The

Encyclopedia Page!

Look Through Your History! Scan Up To 20 Different Cat Breeds!

Implemented with a custom Keras Tensorflow
model based on InceptionV3

Achieving:
Test accuracy of 90.4

0%

F1 Score of 89%

ROC-AUC Score of 0.99

Created with Xcode using SwiftUI

	Terminal Output
	Round 1 Results
	Round 2 Results
	The amount of changes desired by users per Test Round
	User App Rating Per Round

